« Dioxyde de zirconium » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Bref68 (discuter | contributions)
début de restructuration de l'article (introduction courte et paragraphes pour les propriétés, les synthèses et les usages)
 
(45 versions intermédiaires par 12 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
{{voir paronymes|Zircon}}
{{voir paronymes|Zircon}}
{{Infobox Chimie
{{Infobox Chimie
| nom = Dioxyde de zirconium
| nom = Dioxyde de zirconium
| image = Kristallstruktur Zirconium(IV)-oxid.png
| image = Kristallstruktur Zirconium(IV)-oxid.png
| taille image = 225
| taille image = 225
| alternative =
| alternative =
| image2 =
| image2 =
| taille image2 = 200
| taille image2 = 200
| alternative2 =
| alternative2 =
| images = <!--[[Fichier:|130px]][[Fichier:|130px]]<br>-->
| images = <!--[[Fichier:|130px]][[Fichier:|130px]]<br>-->
| légende = <span style="color:#C0C0C0; background-color:#C0C0C0;">__</span> [[Zirconium|Zr{{exp|4+}}]] &nbsp; &nbsp; <span style="color:#EE0000;background-color:#EE0000;">__</span> [[Oxyde|O{{exp|2–}}]]<br>[[Structure cristalline]] du dioxyde de zirconium.
| légende = <span style="color:#C0C0C0; background-color:#C0C0C0;">__</span> [[Zirconium|Zr{{exp|4+}}]] &nbsp; &nbsp; <span style="color:#EE0000;background-color:#EE0000;">__</span> [[Oxyde|O{{exp|2−}}]]<br>[[Structure cristalline]] du dioxyde de zirconium.
<!-- Général -->
<!-- Général -->
| DCI =
| DCI =
| nomIUPAC =
| nomIUPAC =
| nomSystematique = dioxyde de zirconium
| nomSystematique = dioxyde de zirconium
| synonymes = zircone
| synonymes = zircone
| CAS = {{CAS|1|3|1|4|2|3|4}}
| CAS = {{CAS|1|3|1|4|2|3|4}}
| ECHA = 100.013.844
| ECHA = 100.013.844
| EINECS = {{EINECS|2|1|5|2|2|7|2}}
| EINECS = {{EINECS|2|1|5|2|2|7|2}}
| RTECS = {{RTECS|ZH8800000}}
| RTECS = {{RTECS|ZH8800000}}
| ATC = {{ATC|}} {{ATCvet|}}
| ATC = {{ATC|}} {{ATCvet|}}
| DrugBank =
| DrugBank =
| PubChem = {{CID|62395}}{{SID|}}
| PubChem = {{CID|62395}}{{SID|}}
| chEBI =
| chEBI =
| NrE = {{NrE|}}
| NrE = {{NrE|}}
| FEMA = {{FEMA|}}
| FEMA = {{FEMA|}}
| SMILES = O=[Zr]=O
| SMILES = O=[Zr]=O
| InChI =
| InChI =
| InChIKey =
| InChIKey =
| StdInChI = 1S/2O.Zr
| StdInChI = 1S/2O.Zr
| StdInChIKey = MCMNRKCIXSYSNV-UHFFFAOYSA-N
| StdInChIKey = MCMNRKCIXSYSNV-UHFFFAOYSA-N
| apparence = poudre blanche<ref name="GESTIS">{{GESTIS|ZVG=4000|CAS=1314-23-4|Nom=Zirconium(IV) oxide|Date=5 mai 2021}}</ref>
| apparence = poudre blanche<ref name="GESTIS">{{GESTIS|ZVG=4000|CAS=1314-23-4|Nom=Zirconium(IV) oxide|Date=5 mai 2021}}</ref>
<!-- Propriétés chimiques -->
<!-- Propriétés chimiques -->
| formule = {{fchim|ZrO|2}}|Zr=1|O=2|cacher=oui <!--|exp=|categorisationAuto=désactivée-->
| formule = {{fchim|ZrO|2}}
| Zr = 1
| masseMol =
| O = 2
| pKa = {{pKa||T(°C)=|T(K)=}}
| cacher = oui <!--|exp=|categorisationAuto=désactivée-->
| momentDipolaire = {{unité/2|7.80|±=0.02|D}}<ref name="978-1-4200-6679-1">
| masseMol =
{{Ouvrage
| langue = en
| pKa = {{pKa||T(°C)=|T(K)=}}
| momentDipolaire = {{unité/2|7.80|±=0.02|D}}<ref>{{HBChemPhys|89|9-50}}.</ref>
| auteur1 = David R. Lide
| titre = Handbook of chemistry and physics
| éditeur = CRC
| lieu = Boca Raton
| année = 2008
| mois = juin
| jour = 16
| numéro d'édition = 89
| pages totales = 2736
| passage = 9-50
| isbn = 978-1-4200-6679-1
| isbn2 = 1-4200-6679-X
}}</ref>
| susceptibiliteMagnetique =
| susceptibiliteMagnetique =
| diametreMoleculaire = {{unité/2||nm}}
| diametreMoleculaire = {{unité/2||nm}}
| indiceIode =
| indiceIode =
| indiceAcide =
| indiceAcide =
| indiceSaponification =
| indiceSaponification =
<!-- Propriétés physiques -->
<!-- Propriétés physiques -->
| TTransitionVitreuse = {{tmp||°C}}
| TTransitionVitreuse = {{tmp||°C}}
| fusion = {{tmp|2680|°C}}<ref name="GESTIS"/>
| fusion = {{tmp|2680|°C}}<ref name="GESTIS"/>
| ebullition = {{tmp|4300|°C}}<ref name="GESTIS"/>
| ebullition = {{tmp|4300|°C}}<ref name="GESTIS"/>
| solubilite = pratiquement insoluble dans l'eau<ref name="GESTIS"/>
| solubilite = pratiquement insoluble dans l'eau<ref name="GESTIS"/>
| parametreSolubilite = <!-- {{Unité/2||MPa|1/2}} ({{température||°C}}) -->
| parametreSolubilite = <!-- {{Unité/2||MPa|1/2}} ({{température||°C}}) -->
| miscibilite =
| miscibilite =
| masseVolumique = {{Unité|5.85|g/cm3}}<ref name="GESTIS"/> à {{tmp|20|°C}}
| masseVolumique = {{Unité|5.85 g/cm3}} à {{tmp|20|°C}}<ref name="GESTIS"/>
| TAutoInflammation = {{tmp||°C}}
| TAutoInflammation = {{tmp||°C}}
| pointEclair = {{tmp||°C}}
| pointEclair = {{tmp||°C}}
| limitesExplosivite =
| limitesExplosivite =
| pressionVapeur =
| pressionVapeur =
| viscosite =
| viscosite =
| pointCritique =
| pointCritique =
| pointTriple =
| pointTriple =
| conductivitéThermique = {{Unité/2||W||m|-1|K|-1}}
| conductivitéThermique = {{Unité/2||W||m|-1|K|-1}}
| conductivitéÉlectrique =
| conductivitéÉlectrique =
| vitesseSon = {{Unité/2||m||s|-1}}
| vitesseSon = {{Unité/2||m||s|-1}}
<!-- Thermochimie -->
<!-- Thermochimie -->
| emsGaz = {{Unité/2||J||K|-1|mol|-1}}
| emsGaz = {{Unité/2||J||K|-1|mol|-1}}
| emsLiquide = {{Unité|76.65|J||K|-1|mol|-1}}<ref name="WB">{{Lien web|langue=en |url= https://webbook.nist.gov/cgi/cbook.cgi?ID=C1314234&Units=SI&Mask=2#Thermo-Condensed |titre= {{langue|en|Zirconium dioxide}} |site= webbook.nist.gov |consulté le= 21 mai 2022}}.</ref>
| emsLiquide = {{Unité/2||J||K|-1|mol|-1}}
| emsSolide = {{Unité/2||J||K|-1|mol|-1}}
| emsSolide = {{Unité|50.34|J||K|-1|mol|-1}}<ref name="WB"/>
| esfGaz = {{Unité/2||kJ||mol|-1}}
| esfGaz = {{Unité/2||kJ||mol|-1}}
| esfLiquide = {{Unité/2||kJ||mol|-1}}
| esfLiquide = {{Unité|-1023.16|kJ||mol|-1}}<ref name="WB"/>
| esfSolide = {{Unité/2||kJ||mol|-1}}
| esfSolide = {{Unité|-1097.46|kJ||mol|-1}}<ref name="WB"/>
| enthFus =
| enthFus =
| enthVap =
| enthVap =
| capaciteTherm = {{Unité/2||J||K|-1|mol|-1}}
| capaciteTherm = {{Unité|56.11|J||K|-1|mol|-1}} à {{tmp|25|°C}}<ref name="WB"/>
| PCS =
| PCS =
| PCI =
| PCI =
<!-- Propriétés biochimiques -->
<!-- Propriétés biochimiques -->
| codons =
| codons =
| pHisoelectrique =
| pHisoelectrique =
| acideAmineEss =
| acideAmineEss =
<!-- Propriétés électroniques -->
<!-- Propriétés électroniques -->
| bandeInterdite =
| bandeInterdite =
| mobiliteElectronique =
| mobiliteElectronique =
| mobiliteTrous =
| mobiliteTrous =
| 1reEnergieIonisation =
| 1reEnergieIonisation =
| constanteDielectrique =
| constanteDielectrique =
<!-- Cristallographie -->
<!-- Cristallographie -->
| systemeCristallin = [[Système cristallin monoclinique|Monoclinique]]
| systemeCristallin = [[Système cristallin monoclinique|Monoclinique]] à température ambiante
| reseauBravais =
| reseauBravais =
| Pearson = {{SymbolePearson|m|P|12}}
| Pearson = {{SymbolePearson|m|P|12}}
| classe = ''P''2{{ind|1}}/''c'' {{Infobox Chimie/Groupe espace|14|ref=<ref name="3-432-87813-3">{{de}} Georg Brauer, ''Handbuch der Präparativen Anorganischen Chemie'', {{3e|éd.}} révisée, {{vol.|2}}, Enke, Stuttgart, 1978, {{p.|1370}}. {{ISBN|3-432-87813-3}}</ref>}}
| classe = ''P''2{{ind|1}}/''c'' {{Infobox Chimie/Groupe espace|14|ref=<ref name="3-432-87813-3">{{de}} Georg Brauer, ''Handbuch der Präparativen Anorganischen Chemie'', {{3e}}{{éd.}} révisée, {{vol.|2}}, Enke, Stuttgart, 1978, {{p.|1370}}. {{ISBN|3-432-87813-3}}</ref>}}
| Schoenflies =
| Schoenflies =
| Strukturbericht =
| Strukturbericht =
| structureType =
| structureType =
| parametresMaille =
| parametresMaille =
| volume =
| volume =
| macle =
| macle =
<!-- Propriétés optiques -->
<!-- Propriétés optiques -->
| refraction = <!--<math>\textit{n}_{D}^{20}</math> = --> <!-- {{réfraction|T=|λ=|k=|}} -->
| refraction = <!--<math>\textit{n}_{D}^{20}</math> = --> <!-- {{réfraction|T=|λ=|k=|}} -->
| birefringence =
| birefringence =
| dispersion =
| dispersion =
| polychroisme =
| polychroisme =
| fluorescence = <!-- λ<sub>excitation</sub> {{λ||nm}} ; <br>λ<sub>émission</sub> {{λ||nm}} -->
| fluorescence = <!-- λ<sub>excitation</sub> {{λ||nm}} ; <br>λ<sub>émission</sub> {{λ||nm}} -->
| absorption =
| absorption =
| transparence =
| transparence =
| pvrRotatoire = <!-- <math>\lbrack\alpha\rbrack_{D}^{25} = </math> -->
| pvrRotatoire = <!-- <math>\lbrack\alpha\rbrack_{D}^{25} = </math> -->
| cteVerdet =
| cteVerdet =
<!-- Précautions -->
<!-- Précautions -->
| radioactif =
| radioactif =
| numeroIndex = {{indexCE|}}
| numeroIndex = {{indexCE|}}
| SGHref =
| SGHref =
| SGH = {{SGH|}}
| SGH = {{SGH|}}
| SIMDUTref =
| SIMDUTref =
| SIMDUT = {{SIMDUT|}}
| SIMDUT = {{SIMDUT|}}
| NFPA704ref =
| NFPA704ref =
| NFPA704 = {{NFPA 704|Health=|Flammability=|Reactivity=|Other=}}
| NFPA704 = {{NFPA 704|Health=|Flammability=|Reactivity=|Other=}}
| transportRef =
| transportRef =
| transport = {{ADR|Kemler=|ONU=|Classe=|CodeClassification=|Etiquette=|Etiquette2=|Etiquette3=|Emballage=}}
| transport = {{ADR|Kemler=|ONU=|Classe=|CodeClassification=|Etiquette=|Etiquette2=|Etiquette3=|Emballage=}}
| CIRC =
| CIRC =
| inhalation =
| inhalation =
| peau =
| peau =
| yeux =
| yeux =
| ingestion =
| ingestion =
<!-- Écotoxicologie -->
<!-- Écotoxicologie -->
| DL50 = <!-- {{Unité/2||mg||kg|-1}} (souris, [[Ingestion|oral]]) <br> (souris, [[Injection intraveineuse|i.v.]]) <br> (souris, [[sous-cutané|s.c.]]) <br> (souris, [[intrapéritonéal|i.p.]]) -->
| DL50 = <!-- {{Unité/2||mg||kg|-1}} (souris, [[Ingestion|oral]]) <br> (souris, [[Injection intraveineuse|i.v.]]) <br> (souris, [[sous-cutané|s.c.]]) <br> (souris, [[intrapéritonéal|i.p.]]) -->
| CL50 =
| CL50 =
| LogP = <!--([[octanol]]/eau)-->
| LogP = <!--([[octanol]]/eau)-->
| DJA =
| DJA =
| ARFD = <!--mg/kg pc-->
| ARFD = <!--mg/kg pc-->
| AOEL = <!--mg/kg par jour-->
| AOEL = <!--mg/kg par jour-->
| odorat =
| odorat =
<!-- Données pharmacocinétiques -->
<!-- Données pharmacocinétiques -->
| CAM =
| CAM =
| biodisponibilite =
| biodisponibilite =
| liaisonProteique =
| liaisonProteique =
| metabolisme =
| metabolisme =
| demiVieDistrib =
| demiVieDistrib =
| demiVieElim =
| demiVieElim =
| stockage =
| stockage =
| excretion =
| excretion =
<!-- Considérations thérapeutiques -->
<!-- Considérations thérapeutiques -->
| classeTherapeutique =
| classeTherapeutique =
| voieAdministration =
| voieAdministration =
| grossesse =
| grossesse =
| conduiteAuto =
| conduiteAuto =
| precautions =
| precautions =
| antidote =
| antidote =
<!-- Caractère psychotrope -->
<!-- Caractère psychotrope -->
| categoriePsycho =
| categoriePsycho =
| modeConsommation =
| modeConsommation =
| autresNoms =
| autresNoms =
| risqueDependance =
| risqueDependance =
<!-- Composés apparentés -->
<!-- Composés apparentés -->
| autres =
| autres =
| autrescations =
| autrescations =
| autresanions =
| autresanions =
| isomères =
| isomères =
<!-- Supplément -->
<!-- Supplément -->
| supplement =
| supplement =
}}<!-- ----------------------------- Fin de l'infoboîte ----------------------------- -->
}}<!-- ----------------------------- Fin de l'infoboîte ----------------------------- -->
Le '''dioxyde de zirconium''', ou '''oxyde de zirconium({{IV}})''' est un [[composé chimique]] de [[Formule chimique|formule]] {{fchim|ZrO|2}}. Il est couramment appelé '''zircone''' (ne pas confondre avec le zircon qui est un silicate de zirconium). C'est un solide cristallin blanc. On le trouve dans le milieu naturel sous la forme d'un minéral ayant une structure cristalline monoclinique appelé {{Lien|langue=en|trad=Baddeleyite|fr=baddeleyite}}. Il est possible de stabiliser la forme cubique en ajoutant des impuretés, ce matériau est utilisé par exemple dans des capteurs (sonde lambda).
Le '''dioxyde de zirconium''', ou '''oxyde de [[zirconium]]({{IV}})''' est un [[composé chimique]] de [[Formule chimique|formule]] {{fchim|ZrO|2}}. Il est couramment appelé la '''zircone''' (ne pas confondre avec le [[zircon]] qui est un [[silicate]] de zirconium). C'est un solide cristallin blanc. On le trouve dans le milieu naturel sous la forme d'un minéral ayant une structure cristalline [[Système cristallin monoclinique|monoclinique]] appelé {{Lien|baddeleyite}}. Il est possible de stabiliser la forme [[Cube|cubique]] en ajoutant des impuretés.

Ce matériau est utilisé par exemple dans des capteurs ([[sonde lambda]]). La principale utilisation de la zircone est la conception de céramiques utilisées par exemple en odontologie ou comme protections thermiques.


== Propriétés ==
== Propriétés ==
Il s'agit d'une [[Céramique technique|céramique]] [[Matériau réfractaire|réfractaire]] qui [[cristal]]lise dans le [[Système cristallin monoclinique|système monoclinique]] et le [[groupe d'espace]] ''P''2{{ind|1}}/''c'' ({{n°|14}}) avec les [[Paramètre cristallin|paramètres cristallins]] {{nobr|''a'' {{=}} {{unité/2|513.8|pm}}}}, {{nobr|''b'' {{=}} {{unité/2|520.4|pm}}}}, {{nobr|''c'' {{=}} {{unité/2|531.3|pm}}}} et {{nobr|β {{=}} 99,2°}}<ref name="3-432-87813-3" />. , qui contient des impuretés d'[[hafnium]]. La zircone ne doit pas être confondue avec le [[zircon]], minéral constitué de {{Lien|langue=en|trad=Zirconium(IV) silicate|fr=silicate de zirconium(IV)}} {{fchim|ZrSiO|4}}.


=== Structure ===
La zircone est couramment stabilisée à température ambiante dans ses [[Structure cristalline|structures cristallines]] [[Système cristallin cubique|cubique]] ou [[Système cristallin tétragonal|tétragonales]], qui n'existent normalement qu'au-dessus de {{tmp|1173|°C}}, à l'aide de [[Dopage (semi-conducteur)|dopants]] tels que l'[[oxyde de magnésium]] MgO, l'[[oxyde de calcium]] CaO et surtout l'[[oxyde d'yttrium(III)]] {{fchim|Y|2|O|3}}<ref name="10.1002/14356007.a28_543.pub2">
Dans les conditions ambiantes de température et de pression, la zircone [[cristal]]lise dans le [[Système cristallin monoclinique|système monoclinique]] et le [[groupe d'espace]] ''P''2{{ind|1}}/''c'' ({{n°|14}}) avec les [[Paramètre cristallin|paramètres cristallins]] {{nobr|''a'' {{=}} {{unité/2|513.8|pm}}}}, {{nobr|''b'' {{=}} {{unité/2|520.4|pm}}}}, {{nobr|''c'' {{=}} {{unité/2|531.3|pm}}}} et {{nobr|β {{=}} 99,2°}}<ref name="3-432-87813-3" />. On le trouve sous la forme de baddeyelite dans les roches magmatiques, ce minéral contient comme impureté des atomes d'[[hafnium]] en substitution du zirconium.

Le dioxyde de zirconium existe aussi avec des structures cristallines cubique et tétragonales, mais elle ne sont pas stables à température ambiante et n'existent qu'à haute température : [[Système cristallin tétragonal|structure tétragonale]] entre {{tmp|1173|°C}} et {{tmp|2370|°C}}, [[Système cristallin cubique|structure cubique]] entre {{tmp|2370|°C}} et le point de fusion {{tmp|2680|°C}}. Ces températures de changement de phase peuvent être modifiées en fonction de la pression ou de la taille des particules<ref name=":0" />.

{| class="wikitable"
|+
!Système cristallin
!Monoclinique<ref name="3-432-87813-3" />
!Tétragonal<ref name=":0" />
!Cubique<ref name=":0" />
|-
|Groupe d'espace
|''P''2{{ind|1}}/''c'' ({{n°|14}})
|''P''4{{ind|2}}''/nmc'' ({{n°|137}})
|''Fm''{{Surligner|3}}''m'' ({{n°|225}})
|-
|Paramètres cristallins
|{{nobr|''a'' {{=}} {{unité|513.8|pm}}}}<br>{{nobr|''b'' {{=}} {{unité|520.4|pm}}}}<br>{{nobr|''c'' {{=}} {{unité|531.3|pm}}}}<br>{{nobr|β {{=}} 99,2°}}
|{{nobr|''a'' {{=}} {{unité|509.4|pm}}}}<br>{{nobr|''c'' {{=}} {{unité|517.7|pm}}}}<br>
|{{nobr|''a'' {{=}} {{unité|512.4|pm}}}}<br><br>
|-
|Domaine de température
|jusqu'à {{tmp|1173|°C}}
|de {{tmp|1173|2370|°C}}
|de {{tmp|2370|2680|°C}}
|-
|Masse volumique
|{{Unité|5.85 g/cm3}}
|{{Unité|6,10 g/cm3}}
|{{Unité|6,09 g/cm3}}
|}
La structure cubique correspond à [[Structure fluorine|celle de la fluorine]] qui est de type [[cubique à faces centrées]]. Lorsque la température diminue, cette structure se déforme pour donner tout d'abord la structure tétragonale, puis la structure monoclinique.

=== Zircone stabilisée ===
Pour stabiliser la structure cubique à température ambiante, on ajoute des cations de valence plus faible que le zirconium dans la structure cristalline, soit par insertion pour les plus petits ({{fchim|Ca||<sup>2+</sup>}}, {{fchim|Mg||<sup>2+</sup>}}), soit par substitution pour les plus gros ({{fchim|Y||<sup>3+</sup>}}, {{fchim|Ce||<sup>4+</sup>}})<ref name=":0" />. On forme ainsi des oxydes mixtes avec l'[[oxyde de magnésium]] {{fchim|Mg||O}}, l'[[oxyde de calcium]] {{fchim|Ca||O}} et surtout l'[[oxyde d'yttrium(III)]] {{fchim|Y|2|O|3}}<ref name="10.1002/14356007.a28_543.pub2">
{{Article
{{Article
| langue = en
| langue = en
| nom1 = Ralph H. Nielsen et Gerhard Wilfing
| auteur1 = Ralph H. Nielsen | auteur2 = Gerhard Wilfing
| titre = Zirconium and Zirconium Compounds
| titre = Zirconium and Zirconium Compounds
| périodique = Ullmann's Encyclopedia of Industrial Chemistry
| périodique = Ullmann's Encyclopedia of Industrial Chemistry
| volume =
| numéro =
| jour = 15
| jour = 15
| mois = avril
| mois = avril
| année = 2010
| année = 2010
| pages =
| url texte = https://onlinelibrary.wiley.com/doi/10.1002/14356007.a28_543.pub2
| url texte = https://onlinelibrary.wiley.com/doi/10.1002/14356007.a28_543.pub2
| consulté le = 6 mai 2021
| consulté le = 6 mai 2021
| doi = 10.1002/14356007.a28_543.pub2
| doi = 10.1002/14356007.a28_543.pub2
}}</ref>. Si la quantité de dopant est assez importante, la zircone est entièrement de structure cubique (FSZ pour ''Fully Stabilized Zirconia''). Si ce n'est pas le cas, on a un mélange de zircone cubique et tétragonale (PSZ pour ''Partially Stabilized Zirconia'').
| pmid =
| bibcode =
}}</ref>, ce dernier donnant de la [[zircone stabilisée à l'oxyde d'yttrium]], notée {{Abréviation|YSZ|Yttria-Stabilized Zirconia}}, aux multiples applications industrielles — une variété stabilisée à l'[[oxyde de scandium]] {{fchim|Sc|2|O|3}} a par exemple été mise en œuvre sur [[Mars (planète)|Mars]] dans l'expérience [[Mars Oxygen ISRU Experiment|MOXIE]] du [[Astromobile|rover]] [[Exploration de Mars par Perseverance|''{{lang|en|Perseverance}}'']]<ref name="10.1007/s11214-020-00782-8">
{{Article
| langue = en
| nom1 = M. Hecht, J. Hoffman, D. Rapp, J. McClean, J. SooHoo, R. Schaefer, A. Aboobaker, J. Mellstrom, J. Hartvigsen, F. Meyen, E. Hinterman, G. Voecks, A. Liu, M. Nasr, J. Lewis, J. Johnson, C. Guernsey, J. Swoboda, C. Eckert, C. Alcalde, M. Poirier, P. Khopkar, S. Elangovan, M. Madsen, P. Smith, C. Graves, G. Sanders, K. Araghi, M. de la Torre Juarez, D. Larsen, J. Agui, A. Burns, K. Lackner, R. Nielsen, T. Pike, B. Tata, K. Wilson, T. Brown, T. Disarro, R. Morris, R. Schaefer, R. Steinkraus, R. Surampudi, T. Werne et A. Ponce
| titre = Mars Oxygen ISRU Experiment (MOXIE)
| périodique = Space Science Reviews
| volume = 217
| numéro = 1
| jour =
| mois = février
| année = 2021
| numéro article = 9
| url texte = https://link.springer.com/article/10.1007%2Fs11214-020-00782-8
| consulté le = 8 mai 2021
| doi = 10.1007/s11214-020-00782-8
| pmid =
| bibcode = 2021SSRv..217....9H
}}</ref>. Diverses autres [[Terre rare|terres rares]] peuvent être utilisées, qui donnent des matériaux à [[Dureté (matériau)|dureté]] améliorée, avec par exemple une [[dureté Vickers]] de {{unité|8.68|GPa}} ({{nobr|885 HV}}) mesurée avec une [[concentration molaire]] de 13 % d'[[oxyde de cérium(IV)]] {{fchim|CeO|2}}<ref name="10.1016/S0254-0584(97)02057-9">
{{Article
| langue = en
| nom1 = Salah-ud Din et A. Kaleem
| titre = Vickers hardness study of zirconia partially stabilized with lanthanide group oxides
| périodique = Materials Chemistry and Physics
| volume = 53
| numéro = 1
| jour =
| mois = avril
| année = 1998
| pages = 48-54
| url texte = https://www.sciencedirect.com/science/article/abs/pii/S0254058497020579
| consulté le = 5 mai 2021
| doi = 10.1016/S0254-0584(97)02057-9
| pmid =
| bibcode =
}}</ref>. Des [[Traitement de surface|traitements de surface]] appropriés permettent de doter des [[Palier (mécanique)|paliers]] en zircone d'[[État de surface|états de surface]] éliminant significativement les [[frottement]]s, par exemple pour réaliser des [[Palier lisse|paliers lisses]] ou des [[Roulement mécanique|roulements à billes]]. Les zircones sont également des [[Précurseur (chimie)|précurseurs]] des [[PZT|titano-zirconates de plomb]] (céramiques PZT), de formule {{fchim|PbZr|''x''|Ti|1−''x''|O|3}}, où {{nobr|0 ≤ ''x'' ≤ 1}}, aux très nombreuses applications électroniques comme [[Diélectrique high-k|diélectriques high-κ]].


Dans le cas particulier de {{fchim|Y||<sup>3+</sup>}}, on parle de [[zircone stabilisée à l'oxyde d'yttrium]] ou zircone yttriée, notée {{Abréviation|YSZ|Yttria-Stabilized Zirconia}}.
La zircone cubique [[monocristal]]line transparente, dite {{Abréviation|CZ|Cubic Zirconia}}, peut être utilisée comme [[gemme]] pour simuler des [[diamant]]s en [[joaillerie]].

=== Propriétés physiques ===

Les propriétés physiques dépendent fortement de la structure cristalline et de la présence de dopants.

La zircone, comme le [[Oxyde d'hafnium(IV)|dioxyde d'hafnium]] présente une [[conductivité thermique]] très faible, de l'ordre de {{nb|2,5 W m-1 K-1}}<ref>{{Ouvrage|titre=Engineering property data on selected ceramics |titre volume=vol. III, Single oxides|éditeur=Battele Columbus Laboratories |lieu= Columbus, Ohio|date=1981}}.</ref>. C'est donc un matériau intéressant pour concevoir des barrières thermiques.

La zircone est un isolant électrique. La largeur de la [[bande interdite]] du dioxyde de zirconium dépend de la phase cubique, tétragonale, monoclinique ou [[Matériau amorphe|amorphe]] du matériau ainsi que de son mode de production, mais est généralement estimée entre {{unité|5 et 7 eV}}<ref name="10.1116/1.1396639">
{{Article|langue=en|auteur1=Jane P. Chang |auteur2= You-Sheng Lin |auteur3= Karen Chu|titre=Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application|périodique=Journal of Vacuum Science & Technology B|volume=19|numéro=5|mois=septembre|année=2001|doi=10.1116/1.1396639|bibcode=2001JVSTB..19.1782C|url texte=https://avs.scitation.org/doi/abs/10.1116/1.1396639|consulté le=6 mai 2021|pages=1782-1787}}.</ref>.

Sous sa forme stabilisée de structure cubique, la zircone peut devenir un conducteur ionique. Ceci est dû au fait que lorsqu'on insère des cations de faible valence dans la structure, on diminue le nombre d'atomes d'oxygène nécessaires pour que le matériau soit neutre, il y a donc des [[Lacune (cristallographie)|lacunes]] dans la structure cristalline. Cette [[conductivité ionique]] est par exemple utilisée dans la fabrication des [[Sonde lambda|sondes lambda]].

Les propriétés mécaniques de la zircone dépendent de sa structure et des dopants présents. La zircone yttriée a une [[dureté Vickers]] de l'ordre de {{nobr|1 200 HV}} et un [[module de Young]] égal à {{nb|210 GPa}}<ref>{{Article|langue=en|auteur1=A. A. Madfa|auteur2=F. A. Al-Sanabani|auteur3=N. H. Al-Qudami|auteur4=J. S. Al-Sanabani|auteur5=A. G. Amran|titre=Use of Zirconia in Dentistry: An Overview|périodique=The Open Biomaterials Journal|volume=5|date=2014|doi=10.2174/1876502501405010001|pages=1-9}}.</ref>.


== Propriétés générales ==
=== Propriétés chimiques ===
La zircone est chimiquement inerte : elle est lentement attaquée par l'[[acide sulfurique]] et l'[[acide fluorhydrique]] concentré, et donne du [[carbure de zirconium]] ZrC lorsqu'elle est chauffée en présence de [[carbone]], mais donne du [[chlorure de zirconium(IV)]] {{fchim|ZrCl|4}} lorsqu'elle est chauffée avec du carbone en présence de [[Dichlore|chlore]] : cette conversion est à la base de la [[Purification (chimie)|purification]] du zirconium [[Élément chimique|élémentaire]] et est analogue au [[procédé Kroll]] d'extraction du [[titane]].


== Synthèse ==
On obtient la zircone par [[calcination]] de [[Composé chimique|composés]] du [[zirconium]] en tirant profit de sa stabilité thermique<ref name="10.1002/14356007.a28_543.pub2"/>. Le [[zircon]] {{fchim|ZrSiO|4}} est couramment utilisé comme produit de départ. On peut également l'obtenir par [[Réaction de déshydratation|déshydratation]] et [[recuit]] d'[[hydrate]]s d'[[oxyde]]s de zirconium ou de [[Sel (chimie)|sels]] de zirconium tels que des [[nitrate]]s, des [[oxalate]]s ou des [[acétate]]s traités avec des [[oxoacide]]s [[Volatilité (chimie)|volatils]]<ref name="3-432-87813-3"/>. La zircone est chimiquement inerte : elle est lentement attaquée par l'[[acide sulfurique]] et l'[[acide fluorhydrique]] concentré, et donne du [[carbure de zirconium]] ZrC lorsqu'elle est chauffée en présence de [[carbone]], mais donne du [[chlorure de zirconium(IV)]] {{fchim|ZrCl|4}} lorsqu'elle est chauffée avec du carbone en présence de [[Dichlore|chlore]] : cette conversion est à la base de la [[Purification (chimie)|purification]] du zirconium [[Élément chimique|élémentaire]] et est analogue au [[procédé Kroll]] d'extraction du [[titane]].
On peut extraire la zircone directement de la baddeyelite puisqu'elle est constituée très majoritairement de zircone. Des mines de baddeyelite sont exploitées au [[Brésil]] ou en [[Floride]]<ref name=":0">{{Article|auteur1=G. Moulin|auteur2=J. Faverjeon|auteur3=G. Béranger|titre=Zircone - Céramique fonctionnelle|périodique=Techniques de l'Ingénieur|numéro article=N 3210|date=2008}}</ref>. Le [[zircon]] {{fchim|ZrSiO|4}} est aussi couramment utilisé comme produit de départ, il contient jusqu'à 66% en masse de zircone. Il faut tout d'abord convertir ce silicate en [[chlorure de zirconyle]] ZrOCl<sub>2</sub>,8H<sub>2</sub>O, la zircone est ensuite obtenue soit par précipitation, soit par décomposition thermique<ref name=":0" />.


On obtient aussi la zircone par [[calcination]] de divers [[Composé chimique|composés]] du [[zirconium]] en tirant profit de sa stabilité thermique<ref name="10.1002/14356007.a28_543.pub2" />. On peut l'obtenir par [[Réaction de déshydratation|déshydratation]] et [[recuit]] d'[[hydrate]]s d'[[oxyde]]s de zirconium ou de [[Sel (chimie)|sels]] de zirconium tels que des [[nitrate]]s, des [[oxalate]]s ou des [[acétate]]s traités avec des [[oxoacide]]s [[Volatilité (chimie)|volatils]]<ref name="3-432-87813-3" />.
La zircone pure [[cristal]]lise dans le [[Système cristallin monoclinique|système monoclinique]] jusqu'à {{tmp|1173|°C}}, puis passe au [[Système cristallin tétragonal|système tétragonal]] jusqu'à {{tmp|2370|°C}}, et reste [[Système cristallin cubique|cubique]] jusqu'à {{tmp|2680|°C}}, son [[point de fusion]]<ref>{{en}} R. Stevens, « An introduction to zirconia », ''Magnesium Elektron Publication'', {{n°|113}}, 1983.</ref>. Ses [[Groupe d'espace|groupes d'espace]] sont alors respectivement ''P''2{{ind|1}}''/c'' ({{n°|14}}), ''P''4{{ind|2}}''/nmc'' ({{n°|137}}) et ''Fm''{{Surligner|3}}''m'' ({{n°|225}}), avec dans ce dernier cas une {{Lien|langue=en|trad=Fluorite structure|fr=structure fluorine}} [[cubique à faces centrées]].


La zircone est généralement employée sous sa forme dite ''stabilisée'', c'est-à-dire sans [[transition de phase]] induite par chauffage. La transition entre les [[Phase (thermodynamique)|phases]] tétragonale et monoclinique s'accompagne en effet d'un changement de volume pouvant atteindre 5 % susceptible de générer de fortes [[Contrainte de cisaillement|contraintes de cisaillement]] qui fragilisent les [[Joint de grains|joints de grains]]<ref name="10.1111/j.1551-2916.2009.03278.x">
Pour la fabrication des céramiques, la zircone est généralement employée sous sa forme dite ''stabilisée'', c'est-à-dire sans [[transition de phase]] induite par chauffage. En effet, dans les applications à haute température, la transition entre les [[Phase (thermodynamique)|phases]] tétragonale et monoclinique s'accompagne d'un changement de volume pouvant atteindre 5 % susceptible de générer de fortes [[Contrainte de cisaillement|contraintes de cisaillement]] qui fragilisent les [[Joint de grains|joints de grains]]<ref name="10.1111/j.1551-2916.2009.03278.x">
{{Article
{{Article
| langue = en
| langue = en
| nom1 = Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar et David R. Clarke
| auteurs = Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar et David R. Clarke
| titre = The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends
| titre = The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends
| périodique = Journal of the American Ceramic Society
| périodique = Journal of the American Ceramic Society
| volume = 92
| volume = 92
| numéro = 9
| numéro = 9
| jour =
| mois = septembre
| mois = septembre
| année = 2009
| année = 2009
Ligne 251 : Ligne 250 :
| consulté le = 6 mai 2021
| consulté le = 6 mai 2021
| doi = 10.1111/j.1551-2916.2009.03278.x
| doi = 10.1111/j.1551-2916.2009.03278.x
| pmid =
| bibcode =
}}</ref> et peuvent donner lieu à des [[Fissure (matériau)|fissures]] à travers le matériau<ref name="10.1016/j.jnucmat.2014.08.020">
}}</ref> et peuvent donner lieu à des [[Fissure (matériau)|fissures]] à travers le matériau<ref name="10.1016/j.jnucmat.2014.08.020">
{{Article
{{Article
Ligne 261 : Ligne 258 :
| volume = 454
| volume = 454
| numéro = 1-3
| numéro = 1-3
| jour =
| mois = novembre
| mois = novembre
| année = 2014
| année = 2014
Ligne 268 : Ligne 264 :
| consulté le = 6 mai 2021
| consulté le = 6 mai 2021
| doi = 10.1016/j.jnucmat.2014.08.020
| doi = 10.1016/j.jnucmat.2014.08.020
| pmid =
| bibcode =
}}</ref>. Cette stabilisation est généralement réalisée par l'adjonction d'un faible [[Concentration molaire|pourcentage molaire]] d'[[oxyde d'yttrium(III)]] {{fchim|Y|2|O|3}}, ce qui donne un matériau, appelé [[zircone stabilisée à l'oxyde d'yttrium]] et noté {{Abréviation|YSZ|Yttria-Stabilized Zirconia}}, aux propriétés thermiques, mécaniques et électriques améliorées.
}}</ref>. Cette stabilisation est généralement réalisée par l'adjonction d'un faible [[Concentration molaire|pourcentage molaire]] d'[[oxyde d'yttrium(III)]] {{fchim|Y|2|O|3}}, ce qui donne un matériau, appelé [[zircone stabilisée à l'oxyde d'yttrium]] et noté {{Abréviation|YSZ|Yttria-Stabilized Zirconia}}, aux propriétés thermiques, mécaniques et électriques améliorées.


Ligne 280 : Ligne 274 :
| volume = 34
| volume = 34
| numéro = 5
| numéro = 5
| jour =
| mois = mai
| mois = mai
| année = 1986
| année = 1986
Ligne 287 : Ligne 280 :
| consulté le = 6 mai 2021
| consulté le = 6 mai 2021
| doi = 10.1016/0001-6160(86)90052-0
| doi = 10.1016/0001-6160(86)90052-0
| pmid =
| bibcode =
}}</ref>{{,}}<ref name="10.1016/0001-6160(79)90046-4">
}}</ref>{{,}}<ref name="10.1016/0001-6160(79)90046-4">
{{Article
{{Article
Ligne 297 : Ligne 288 :
| volume = 27
| volume = 27
| numéro = 10
| numéro = 10
| jour =
| mois = octobre
| mois = octobre
| année = 1979
| année = 1979
Ligne 304 : Ligne 294 :
| consulté le = 6 mai 2021
| consulté le = 6 mai 2021
| doi = 10.1016/0001-6160(79)90046-4
| doi = 10.1016/0001-6160(79)90046-4
| pmid =
| bibcode =
}}</ref>. La zircone [[polycristal]]line tétragonale, ou [[Zircone Y-TZP|zircone {{Abréviation|TZP|Tetragonal Zirconia Polycrystal}}]], est un cas particulier de zircone partiellement stabilisée, ou {{Abréviation|PSZ|Partially Stabilized Zirconia}}, constituée uniquement de phases tétragonales métastables.
}}</ref>. La zircone [[polycristal]]line tétragonale, ou [[Zircone Y-TZP|zircone {{Abréviation|TZP|Tetragonal Zirconia Polycrystal}}]], est un cas particulier de zircone partiellement stabilisée, ou {{Abréviation|PSZ|Partially Stabilized Zirconia}}, constituée uniquement de phases tétragonales métastables.


== Utilisations ==
La largeur de la [[bande interdite]] du dioxyde de zirconium dépend de la phase cubique, tétragonale, monoclinique ou [[Matériau amorphe|amorphe]] du matériau ainsi que de son mode de production, mais est généralement estimée entre {{unité|5|et=7|eV}}<ref name="10.1116/1.1396639">
{{Article
| langue = en
| nom1 = Jane P. Chang, You-Sheng Lin et Karen Chu
| titre = Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application
| périodique = Journal of Vacuum Science & Technology B
| volume = 19
| numéro = 5
| jour =
| mois = septembre
| année = 2001
| pages = 1782-1787
| url texte = https://avs.scitation.org/doi/abs/10.1116/1.1396639
| consulté le = 6 mai 2021
| doi = 10.1116/1.1396639
| pmid =
| bibcode = 2001JVSTB..19.1782C
}}</ref>.


=== Zircone ===
La zircone peut être mise en œuvre par [[frittage]] ou par [[projection thermique|projection plasma]]. Après frittage, elle se caractérise par une très grande [[Résistance des matériaux|résistance]] à la [[Rupture (matériau)|rupture]], à la [[Fissure (matériau)|fissuration]]<ref>[http://www.zircone.fr zircone.fr]</ref>.
La zircone est principalement utilisée pour produire des [[Céramique technique|céramiques]] [[Dureté (matériau)|dures]], comme en [[odontologie]], mais l'est également comme revêtement protecteur pour particules de pigments de [[dioxyde de titane]]<ref name="10.1002/14356007.a28_543.pub2"/>, comme [[matériau réfractaire]], comme [[isolant électrique]], comme [[abrasif]] ou encore comme constituant d'[[Émail (verre)|émail]]. On la retrouve par exemple dans les [[Résistance à l'usure|pièces d'usure]] soumises à des [[frottement]]s, comme les [[Palier (mécanique)|paliers]] — [[Palier lisse|paliers lisses]] ou [[Roulement mécanique|roulements à billes]] — tels que les [[Chemise (technique)|chemises]] des [[moteur]]s en [[compétition automobile]]. La zircone peut être mise en œuvre par [[frittage]] ou par [[projection thermique|projection plasma]]. Après frittage, elle se caractérise par une très grande [[Résistance des matériaux|résistance]] à la [[Rupture (matériau)|rupture]], à la [[Fissure (matériau)|fissuration]]<ref>[http://www.zircone.fr zircone.fr]</ref>.


=== Zircone stabilisée ===
== Utilisations ==
La zircone stabilisée — notamment [[Zircone stabilisée à l'oxyde d'yttrium|à l'oxyde d'yttrium]] dite 8YSZ — est utilisée dans les [[Sonde lambda|sondes lambda]] et les membranes pour [[Pile à combustible|piles à combustible]] en raison de sa perméabilité à l'oxygène à haute température, ce qui en fait une {{Lien|langue=en|trad=Electroceramics|fr=électrocéramique}} des plus utiles. Elle est également employée comme [[électrolyte]] pour [[Composant électronique|composants]] [[Électrochromisme|électrochromes]].


Une variété stabilisée à l'[[oxyde de scandium]] {{fchim|Sc|2|O|3}} a par exemple été mise en œuvre sur [[Mars (planète)|Mars]] dans l'expérience [[Mars Oxygen ISRU Experiment|MOXIE]] du [[Astromobile|rover]] [[Exploration de Mars par Perseverance|''{{lang|en|Perseverance}}'']]<ref name="10.1007/s11214-020-00782-8">
La zircone est principalement utilisée pour produire des [[Céramique technique|céramiques]] [[Dureté (matériau)|dures]], comme en [[odontologie]], mais l'est également comme revêtement protecteur pour particules de pigments de [[dioxyde de titane]]<ref name="10.1002/14356007.a28_543.pub2"/>, comme [[matériau réfractaire]], comme [[isolant électrique]], comme [[abrasif]] ou encore comme constituant d'[[Émail (verre)|émail]]. On la retrouve par exemple dans les [[Résistance à l'usure|pièces d'usure]] soumises à des [[frottement]]s, comme les [[Palier (mécanique)|paliers]] — [[Palier lisse|paliers lisses]] ou [[Roulement mécanique|roulements à billes]] — tels que les [[Chemise (technique)|chemises]] des [[moteur]]s en [[compétition automobile]].
{{Article|langue=en|nom1=M. Hecht, J. Hoffman, D. Rapp, J. McClean, J. SooHoo, R. Schaefer, A. Aboobaker, J. Mellstrom, J. Hartvigsen, F. Meyen, E. Hinterman, G. Voecks, A. Liu, M. Nasr, J. Lewis, J. Johnson, C. Guernsey, J. Swoboda, C. Eckert, C. Alcalde, M. Poirier, P. Khopkar, S. Elangovan, M. Madsen, P. Smith, C. Graves, G. Sanders, K. Araghi, M. de la Torre Juarez, D. Larsen, J. Agui, A. Burns, K. Lackner, R. Nielsen, T. Pike, B. Tata, K. Wilson, T. Brown, T. Disarro, R. Morris, R. Schaefer, R. Steinkraus, R. Surampudi, T. Werne et A. Ponce|titre=Mars Oxygen ISRU Experiment (MOXIE)|périodique=Space Science Reviews|volume=217|numéro=1|numéro article=9|mois=février|année=2021|doi=10.1007/s11214-020-00782-8|bibcode=2021SSRv..217....9H|url texte=https://link.springer.com/article/10.1007%2Fs11214-020-00782-8|consulté le=8 mai 2021}}</ref>. Diverses autres [[Terre rare|terres rares]] peuvent être utilisées, qui donnent des matériaux à [[Dureté (matériau)|dureté]] améliorée, avec par exemple une [[dureté Vickers]] de {{unité|8.68|GPa}} ({{nobr|885 HV}}) mesurée avec une [[concentration molaire]] de 13 % d'[[oxyde de cérium(IV)]] {{fchim|CeO|2}}<ref name="10.1016/S0254-0584(97)02057-9">
{{Article|langue=en|nom1=Salah-ud Din et A. Kaleem|titre=Vickers hardness study of zirconia partially stabilized with lanthanide group oxides|périodique=Materials Chemistry and Physics|volume=53|numéro=1|mois=avril|année=1998|doi=10.1016/S0254-0584(97)02057-9|url texte=https://www.sciencedirect.com/science/article/abs/pii/S0254058497020579|consulté le=5 mai 2021|pages=48-54}}</ref>. Des [[Traitement de surface|traitements de surface]] appropriés permettent de doter des [[Palier (mécanique)|paliers]] en zircone d'[[État de surface (mécanique)|états de surface]] éliminant significativement les [[frottement]]s, par exemple pour réaliser des [[Palier lisse|paliers lisses]] ou des [[Roulement mécanique|roulements à billes]].


La zircone cubique [[monocristal]]line transparente, dite {{Abréviation|CZ|Cubic Zirconia}}, peut être utilisée comme [[gemme]] pour simuler des [[diamant]]s en [[joaillerie]].
La zircone stabilisée — notamment [[Zircone stabilisée à l'oxyde d'yttrium|à l'oxyde d'yttrium]] dite 8YSZ — est utilisée dans les [[Sonde lambda|sondes lambda]] et les membranes pour [[Pile à combustible|piles à combustible]] en raison de sa perméabilité à l'oxygène à haute température, ce qui en fait une {{Lien|langue=en|trad=Electroceramics|fr=électrocéramique}} des plus utiles. Elle est également employée comme [[électrolyte]] pour [[Composant électronique|composants]] [[Électrochromisme|électrochromes]].


La zircone [[polycristal]]line [[Système cristallin tétragonal|tétragonale]] ([[Zircone Y-TZP|zircone {{Abréviation|TZP|Tetragonal Zirconia Polycrystal}}]]) est utilisée en [[odontologie conservatrice]] pour la réalisation de [[Prothèse dentaire|prothèses dentaires]] telles que [[Couronne (dent)|couronnes]] et [[Bridge (chirurgie dentaire)|bridges]]. Elle est également utilisée pour la réalisation de têtes fémorales des [[Prothèse totale de hanche|prothèses de hanche]].
La zircone [[polycristal]]line [[Système cristallin tétragonal|tétragonale]] ([[Zircone Y-TZP|zircone {{Abréviation|TZP|Tetragonal Zirconia Polycrystal}}]]) est utilisée en [[odontologie conservatrice]] pour la réalisation de [[Prothèse dentaire|prothèses dentaires]] telles que [[Couronne (dent)|couronnes]] et [[Bridge (chirurgie dentaire)|bridges]]. Elle est également utilisée pour la réalisation de têtes fémorales des [[Prothèse totale de hanche|prothèses de hanche]].


Les zircones sont également des [[Précurseur (chimie)|précurseurs]] des [[PZT|titano-zirconates de plomb]] (céramiques PZT), de formule {{fchim|PbZr|''x''|Ti|1−''x''|O|3}}, où {{nobr|0 ≤ ''x'' ≤ 1}}, aux très nombreuses applications électroniques comme [[Diélectrique high-k|diélectriques high-κ]], en subsitution du [[dioxyde de silicium]] {{fchim|SiO|2}} dont la [[permittivité]] n'est pas assez élevée pour les technologies contemporaines des semiconducteurs.
Les zircones sont également des [[Précurseur (chimie)|précurseurs]] des [[PZT|titano-zirconates de plomb]] (céramiques PZT), de formule {{fchim|PbZr|''x''|Ti|1−''x''|O|3}}, où {{nobr|0 ≤ ''x'' ≤ 1}}, aux très nombreuses applications électroniques comme [[Diélectrique high-k|diélectriques high-κ]], en substitution du [[dioxyde de silicium]] {{fchim|SiO|2}} dont la [[permittivité]] n'est pas assez élevée pour les technologies contemporaines des semiconducteurs.


=== Applications thermiques ===
=== Applications thermiques ===
Ligne 348 : Ligne 323 :
| titre = New ceramic thermal barrier coating is long, strong, and down to get the friction on
| titre = New ceramic thermal barrier coating is long, strong, and down to get the friction on
| date = 23 mars 2014
| date = 23 mars 2014
| site = https://ceramics.org/
| site = ceramics.org
| éditeur = The American Ceramic Society
| éditeur = The American Ceramic Society
| consulté le = 7 mai 2021
| consulté le = 7 mai 2021
}}.</ref> et [[Turbine à gaz|turbines à gaz]] permettant un fonctionnement à haute température. Son [[coefficient de dilatation thermique]] est relativement élevé pour une céramique, ce qui permet d'envisager la réalisation de couples céramique/[[alliage]]s [[métal]]liques présentant de bonnes propriétés thermiques et mécaniques<ref name="1996INPT018G">
}}.</ref> et [[Turbine à gaz|turbines à gaz]] permettant un fonctionnement à haute température. Son [[coefficient de dilatation thermique]] est relativement élevé pour une céramique, ce qui permet d'envisager la réalisation de couples céramique/[[alliage]]s [[métal]]liques présentant de bonnes propriétés thermiques et mécaniques<ref name="1996INPT018G">
{{Lien web
{{Lien web
| langue = fr
| auteur1 = Fabrice Crabos
| auteur1 = Fabrice Crabos
| url = https://www.theses.fr/1996INPT018G
| url = https://www.theses.fr/1996INPT018G
| titre = Caractérisation, évaluation et optimisation de systèmes barrière thermique industriels. Applications aux turbines à gaz
| titre = Caractérisation, évaluation et optimisation de systèmes barrière thermique industriels. Applications aux turbines à gaz
| date = octobre 1996
| date = octobre 1996
| site = https://www.theses.fr/
| site = theses.fr
| éditeur = [[Institut national polytechnique de Toulouse]]
| éditeur = [[Institut national polytechnique de Toulouse]]
| consulté le = 7 mai 2021
| consulté le = 7 mai 2021
Ligne 381 : Ligne 355 :
| doi = 10.1021/jz402731s
| doi = 10.1021/jz402731s
| pmid = 26276590
| pmid = 26276590
| bibcode =
}}</ref>, ce qui permet de générer des [[Porteur de charge|porteurs]] ([[électron]]s et [[Trou d'électron|trous]]) d'énergie élevée. Certaines études ont démontré l'activité de la zircone, [[Dopage (semi-conducteur)|dopée]] pour accroître son [[Absorption (optique)|absorption]] dans le [[spectre visible]], dans la [[Catabolisme|dégradation]] de [[matière organique]]<ref name="10.1016/j.micromeso.2009.05.006">
}}</ref>, ce qui permet de générer des [[Porteur de charge|porteurs]] ([[électron]]s et [[Trou d'électron|trous]]) d'énergie élevée. Certaines études ont démontré l'activité de la zircone, [[Dopage (semi-conducteur)|dopée]] pour accroître son [[Absorption (optique)|absorption]] dans le [[spectre visible]], dans la [[Catabolisme|dégradation]] de [[matière organique]]<ref name="10.1016/j.micromeso.2009.05.006">
{{Article
{{Article
Ligne 390 : Ligne 363 :
| volume = 124
| volume = 124
| numéro = 1-3
| numéro = 1-3
| jour =
| mois = août-septembre
| mois = août-septembre
| année = 2009
| année = 2009
Ligne 397 : Ligne 369 :
| consulté le = 7 mai 2021
| consulté le = 7 mai 2021
| doi = 10.1016/j.micromeso.2009.05.006
| doi = 10.1016/j.micromeso.2009.05.006
| pmid =
| bibcode =
}}</ref>{{,}}<ref name="10.3390/nano9040534 ">
}}</ref>{{,}}<ref name="10.3390/nano9040534 ">
{{Article
{{Article
Ligne 416 : Ligne 386 :
| pmid = 30987140
| pmid = 30987140
| pmc = 6523972
| pmc = 6523972
}}</ref> et dans la [[Réduction (chimie)|réduction]] du [[chrome hexavalent]] des [[eaux usées]]<ref>
| bibcode =
}}</ref> et dans la [[Réduction (chimie)|réduction]] du [[chrome hexavalent]] des [[eaux usées]]<ref name="">
{{Article
{{Article
| langue = en
| langue = en
Ligne 425 : Ligne 394 :
| volume = 10
| volume = 10
| numéro = 4
| numéro = 4
| jour =
| mois = avril
| mois = avril
| année = 2020
| année = 2020
Ligne 434 : Ligne 402 :
| pmid = 32325680
| pmid = 32325680
| pmc = 7221772
| pmc = 7221772
| bibcode =
}}</ref>.
}}</ref>.


Ligne 446 : Ligne 413 :
| périodique = Transactions of the Indian Institute of Metals
| périodique = Transactions of the Indian Institute of Metals
| volume = 72
| volume = 72
| numéro =
| jour =
| mois = juin
| mois = juin
| année = 2019
| année = 2019
Ligne 454 : Ligne 419 :
| consulté le = 8 mai 2021
| consulté le = 8 mai 2021
| doi = 10.1007/s12666-019-01742-9
| doi = 10.1007/s12666-019-01742-9
| pmid =
| bibcode =
}}</ref>. La zircone confère leur couleur blanche à ces lames, des lames noires chargées en [[carbone]] existant également.
}}</ref>. La zircone confère leur couleur blanche à ces lames, des lames noires chargées en [[carbone]] existant également.


<gallery mode="packed" heights="90px">
<gallery mode="packed" heights="90px">
Fichier:Dalstrong Ceramic KnifeM.png|{{Centrer|[[Lame en céramique]] consituée de zircone chargée en [[carbone]].}}
Fichier:Dalstrong Ceramic KnifeM.png|{{Centrer|[[Lame en céramique]] constituée de zircone chargée en [[carbone]].}}
</gallery>
</gallery>


=== Joaillerie et horlogerie ===
=== Joaillerie et horlogerie ===


En raison de la possibilité de lui donner des teintes diverses (noir, blanc, rose...), de sa relative [[résilience (physique)|résilience]] comparativement à d'autres céramiques et de son [[indice de réfraction]] élevé, la zircone est utilisée comme matériau pour la réalisation d'objets de luxe en joaillerie, en bijouterie et en horlogerie.
En raison de la possibilité de lui donner des teintes diverses (noir, blanc, rose{{etc.}}), de sa relative [[résilience (physique)|résilience]] comparativement à d'autres céramiques et de son [[indice de réfraction]] élevé, la zircone est utilisée comme matériau pour la réalisation d'objets de luxe en joaillerie, en bijouterie et en horlogerie.


<gallery mode="packed" heights="200px">
<gallery mode="packed" heights="200px">
Ligne 472 : Ligne 435 :
L'un des principaux problèmes tient à la difficulté de polissage, du fait de la dureté du matériau.
L'un des principaux problèmes tient à la difficulté de polissage, du fait de la dureté du matériau.


La zircone est aussi utilisée par [[Omega (entreprise)|Omega]] : la Speedmaster « Dark Side of the Moon » est fabriquée à partir d'un seul bloc d'oxyde de zirconium. Seiko<ref>{{Lien web |langue=fr |titre=Grand Seiko |url=https://www.grand-seiko.com/fr-fr |site=www.grand-seiko.com |consulté le=2019-10-16}}.</ref> à recours au zirconium noir ou bleu pour le bracelet et la montre dans certaines collections de luxe très haut de gamme.
La zircone est aussi utilisée par [[Omega (entreprise)|Omega]] : la Speedmaster « Dark Side of the Moon » est fabriquée à partir d'un seul bloc d'oxyde de zirconium. Seiko<ref>{{Lien web |titre=Grand Seiko |url=https://www.grand-seiko.com/fr-fr |site=grand-seiko.com |consulté le=2019-10-16}}.</ref> a recours au zirconium noir ou bleu pour le bracelet et la montre dans certaines collections de luxe très haut de gamme.


== Notes et références ==
== Notes et références ==

{{Références}}
{{Références}}

== Voir aussi ==
=== Articles connexes ===
* [[Zircone Y-TZP]]
* [[Céramique technique]]

{{Autres projets|commons=Category:Zirconium dioxide}}
{{Autres projets|commons=Category:Zirconium dioxide}}



Dernière version du 23 mars 2024 à 22:55

Dioxyde de zirconium
Image illustrative de l’article Dioxyde de zirconium
__ Zr4+     __ O2−
Structure cristalline du dioxyde de zirconium.
Identification
Nom systématique dioxyde de zirconium
Synonymes

zircone

No CAS 1314-23-4
No ECHA 100.013.844
No CE 215-227-2
No RTECS ZH8800000
PubChem 62395
SMILES
InChI
Apparence poudre blanche[1]
Propriétés chimiques
Formule O2ZrZrO2
Masse molaire[3] 123,223 ± 0,003 g/mol
O 25,97 %, Zr 74,03 %,
Moment dipolaire 7,80 ± 0,02 D[2]
Propriétés physiques
fusion 2 680 °C[1]
ébullition 4 300 °C[1]
Solubilité pratiquement insoluble dans l'eau[1]
Masse volumique 5,85 g/cm3 à 20 °C[1]
Thermochimie
S0liquide, 1 bar 76,65 J K−1 mol−1[4]
S0solide 50,34 J K−1 mol−1[4]
ΔfH0liquide −1 023,16 kJ mol−1[4]
ΔfH0solide −1 097,46 kJ mol−1[4]
Cp 56,11 J K−1 mol−1 à 25 °C[4]
Cristallographie
Système cristallin Monoclinique à température ambiante
Symbole de Pearson
Classe cristalline ou groupe d’espace P21/c (no 14) [5]

Unités du SI et CNTP, sauf indication contraire.

Le dioxyde de zirconium, ou oxyde de zirconium(IV) est un composé chimique de formule ZrO2. Il est couramment appelé la zircone (ne pas confondre avec le zircon qui est un silicate de zirconium). C'est un solide cristallin blanc. On le trouve dans le milieu naturel sous la forme d'un minéral ayant une structure cristalline monoclinique appelé baddeleyite (en). Il est possible de stabiliser la forme cubique en ajoutant des impuretés.

Ce matériau est utilisé par exemple dans des capteurs (sonde lambda). La principale utilisation de la zircone est la conception de céramiques utilisées par exemple en odontologie ou comme protections thermiques.

Propriétés[modifier | modifier le code]

Structure[modifier | modifier le code]

Dans les conditions ambiantes de température et de pression, la zircone cristallise dans le système monoclinique et le groupe d'espace P21/c (no 14) avec les paramètres cristallins a = 513,8 pm, b = 520,4 pm, c = 531,3 pm et β = 99,2°[5]. On le trouve sous la forme de baddeyelite dans les roches magmatiques, ce minéral contient comme impureté des atomes d'hafnium en substitution du zirconium.

Le dioxyde de zirconium existe aussi avec des structures cristallines cubique et tétragonales, mais elle ne sont pas stables à température ambiante et n'existent qu'à haute température : structure tétragonale entre 1 173 °C et 2 370 °C, structure cubique entre 2 370 °C et le point de fusion 2 680 °C. Ces températures de changement de phase peuvent être modifiées en fonction de la pression ou de la taille des particules[6].

Système cristallin Monoclinique[5] Tétragonal[6] Cubique[6]
Groupe d'espace P21/c (no 14) P42/nmc (no 137) Fm3m (no 225)
Paramètres cristallins a = 513,8 pm
b = 520,4 pm
c = 531,3 pm
β = 99,2°
a = 509,4 pm
c = 517,7 pm
a = 512,4 pm

Domaine de température jusqu'à 1 173 °C de 1 173 à 2 370 °C de 2 370 à 2 680 °C
Masse volumique 5,85 g/cm3 6,10 g/cm3 6,09 g/cm3

La structure cubique correspond à celle de la fluorine qui est de type cubique à faces centrées. Lorsque la température diminue, cette structure se déforme pour donner tout d'abord la structure tétragonale, puis la structure monoclinique.

Zircone stabilisée[modifier | modifier le code]

Pour stabiliser la structure cubique à température ambiante, on ajoute des cations de valence plus faible que le zirconium dans la structure cristalline, soit par insertion pour les plus petits (Ca2+, Mg2+), soit par substitution pour les plus gros (Y3+, Ce4+)[6]. On forme ainsi des oxydes mixtes avec l'oxyde de magnésium MgO, l'oxyde de calcium CaO et surtout l'oxyde d'yttrium(III) Y2O3[7]. Si la quantité de dopant est assez importante, la zircone est entièrement de structure cubique (FSZ pour Fully Stabilized Zirconia). Si ce n'est pas le cas, on a un mélange de zircone cubique et tétragonale (PSZ pour Partially Stabilized Zirconia).

Dans le cas particulier de Y3+, on parle de zircone stabilisée à l'oxyde d'yttrium ou zircone yttriée, notée YSZ.

Propriétés physiques[modifier | modifier le code]

Les propriétés physiques dépendent fortement de la structure cristalline et de la présence de dopants.

La zircone, comme le dioxyde d'hafnium présente une conductivité thermique très faible, de l'ordre de 2,5 W m−1 K−1[8]. C'est donc un matériau intéressant pour concevoir des barrières thermiques.

La zircone est un isolant électrique. La largeur de la bande interdite du dioxyde de zirconium dépend de la phase cubique, tétragonale, monoclinique ou amorphe du matériau ainsi que de son mode de production, mais est généralement estimée entre 5 et 7 eV[9].

Sous sa forme stabilisée de structure cubique, la zircone peut devenir un conducteur ionique. Ceci est dû au fait que lorsqu'on insère des cations de faible valence dans la structure, on diminue le nombre d'atomes d'oxygène nécessaires pour que le matériau soit neutre, il y a donc des lacunes dans la structure cristalline. Cette conductivité ionique est par exemple utilisée dans la fabrication des sondes lambda.

Les propriétés mécaniques de la zircone dépendent de sa structure et des dopants présents. La zircone yttriée a une dureté Vickers de l'ordre de 1 200 HV et un module de Young égal à 210 GPa[10].

Propriétés chimiques[modifier | modifier le code]

La zircone est chimiquement inerte : elle est lentement attaquée par l'acide sulfurique et l'acide fluorhydrique concentré, et donne du carbure de zirconium ZrC lorsqu'elle est chauffée en présence de carbone, mais donne du chlorure de zirconium(IV) ZrCl4 lorsqu'elle est chauffée avec du carbone en présence de chlore : cette conversion est à la base de la purification du zirconium élémentaire et est analogue au procédé Kroll d'extraction du titane.

Synthèse[modifier | modifier le code]

On peut extraire la zircone directement de la baddeyelite puisqu'elle est constituée très majoritairement de zircone. Des mines de baddeyelite sont exploitées au Brésil ou en Floride[6]. Le zircon ZrSiO4 est aussi couramment utilisé comme produit de départ, il contient jusqu'à 66% en masse de zircone. Il faut tout d'abord convertir ce silicate en chlorure de zirconyle ZrOCl2,8H2O, la zircone est ensuite obtenue soit par précipitation, soit par décomposition thermique[6].

On obtient aussi la zircone par calcination de divers composés du zirconium en tirant profit de sa stabilité thermique[7]. On peut l'obtenir par déshydratation et recuit d'hydrates d'oxydes de zirconium ou de sels de zirconium tels que des nitrates, des oxalates ou des acétates traités avec des oxoacides volatils[5].

Pour la fabrication des céramiques, la zircone est généralement employée sous sa forme dite stabilisée, c'est-à-dire sans transition de phase induite par chauffage. En effet, dans les applications à haute température, la transition entre les phases tétragonale et monoclinique s'accompagne d'un changement de volume pouvant atteindre 5 % susceptible de générer de fortes contraintes de cisaillement qui fragilisent les joints de grains[11] et peuvent donner lieu à des fissures à travers le matériau[12]. Cette stabilisation est généralement réalisée par l'adjonction d'un faible pourcentage molaire d'oxyde d'yttrium(III) Y2O3, ce qui donne un matériau, appelé zircone stabilisée à l'oxyde d'yttrium et noté YSZ, aux propriétés thermiques, mécaniques et électriques améliorées.

La phase tétragonale peut, dans certains cas, être métastable, ce qui peut conduire, sous l'effet de contraintes mécaniques, et notamment de concentration de contraintes au bord des fissures, à former des phases monocliniques au sein du matériau ; l'expansion volumique associée a pour effet de comprimer les fissures et de retarder leur propagation, ce qui améliore la ténacité de ces zircones. Ce mécanisme de renforcement par transition de phase induite sous contrainte mécanique est souvent désigné par son terme anglais transformation toughening, et contribue à la fiabilité et à la durée de vie des pièces en zircone stabilisée[13],[14]. La zircone polycristalline tétragonale, ou zircone TZP, est un cas particulier de zircone partiellement stabilisée, ou PSZ, constituée uniquement de phases tétragonales métastables.

Utilisations[modifier | modifier le code]

Zircone[modifier | modifier le code]

La zircone est principalement utilisée pour produire des céramiques dures, comme en odontologie, mais l'est également comme revêtement protecteur pour particules de pigments de dioxyde de titane[7], comme matériau réfractaire, comme isolant électrique, comme abrasif ou encore comme constituant d'émail. On la retrouve par exemple dans les pièces d'usure soumises à des frottements, comme les palierspaliers lisses ou roulements à billes — tels que les chemises des moteurs en compétition automobile. La zircone peut être mise en œuvre par frittage ou par projection plasma. Après frittage, elle se caractérise par une très grande résistance à la rupture, à la fissuration[15].

Zircone stabilisée[modifier | modifier le code]

La zircone stabilisée — notamment à l'oxyde d'yttrium dite 8YSZ — est utilisée dans les sondes lambda et les membranes pour piles à combustible en raison de sa perméabilité à l'oxygène à haute température, ce qui en fait une électrocéramique des plus utiles. Elle est également employée comme électrolyte pour composants électrochromes.

Une variété stabilisée à l'oxyde de scandium Sc2O3 a par exemple été mise en œuvre sur Mars dans l'expérience MOXIE du rover Perseverance[16]. Diverses autres terres rares peuvent être utilisées, qui donnent des matériaux à dureté améliorée, avec par exemple une dureté Vickers de 8,68 GPa (885 HV) mesurée avec une concentration molaire de 13 % d'oxyde de cérium(IV) CeO2[17]. Des traitements de surface appropriés permettent de doter des paliers en zircone d'états de surface éliminant significativement les frottements, par exemple pour réaliser des paliers lisses ou des roulements à billes.

La zircone cubique monocristalline transparente, dite CZ, peut être utilisée comme gemme pour simuler des diamants en joaillerie.

La zircone polycristalline tétragonale (zircone TZP) est utilisée en odontologie conservatrice pour la réalisation de prothèses dentaires telles que couronnes et bridges. Elle est également utilisée pour la réalisation de têtes fémorales des prothèses de hanche.

Les zircones sont également des précurseurs des titano-zirconates de plomb (céramiques PZT), de formule PbZrxTi1−xO3, où 0 ≤ x ≤ 1, aux très nombreuses applications électroniques comme diélectriques high-κ, en substitution du dioxyde de silicium SiO2 dont la permittivité n'est pas assez élevée pour les technologies contemporaines des semiconducteurs.

Applications thermiques[modifier | modifier le code]

La zircone cubique présente une conductivité thermique particulièrement faible qui lui vaut d'être utilisée comme barrière thermique pour réacteurs d'avion[18] et turbines à gaz permettant un fonctionnement à haute température. Son coefficient de dilatation thermique est relativement élevé pour une céramique, ce qui permet d'envisager la réalisation de couples céramique/alliages métalliques présentant de bonnes propriétés thermiques et mécaniques[19].

Environnement[modifier | modifier le code]

La zircone peut être utilisée comme photocatalyseur en raison de sa grande largeur de bande interdite, de l'ordre de 5 eV[20], ce qui permet de générer des porteurs (électrons et trous) d'énergie élevée. Certaines études ont démontré l'activité de la zircone, dopée pour accroître son absorption dans le spectre visible, dans la dégradation de matière organique[21],[22] et dans la réduction du chrome hexavalent des eaux usées[23].

Lames de couteaux en céramique[modifier | modifier le code]

La zircone est également utilisée dans la fabrication de couteaux à lame en céramique[24]. La zircone confère leur couleur blanche à ces lames, des lames noires chargées en carbone existant également.

Joaillerie et horlogerie[modifier | modifier le code]

En raison de la possibilité de lui donner des teintes diverses (noir, blanc, rose, etc.), de sa relative résilience comparativement à d'autres céramiques et de son indice de réfraction élevé, la zircone est utilisée comme matériau pour la réalisation d'objets de luxe en joaillerie, en bijouterie et en horlogerie.

L'un des principaux problèmes tient à la difficulté de polissage, du fait de la dureté du matériau.

La zircone est aussi utilisée par Omega : la Speedmaster « Dark Side of the Moon » est fabriquée à partir d'un seul bloc d'oxyde de zirconium. Seiko[25] a recours au zirconium noir ou bleu pour le bracelet et la montre dans certaines collections de luxe très haut de gamme.

Notes et références[modifier | modifier le code]

  1. a b c d et e Entrée « Zirconium(IV) oxide » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 5 mai 2021 (JavaScript nécessaire)
  2. (en) David R. Lide, CRC Handbook of Chemistry and Physics, Boca Raton, CRC Press/Taylor & Francis, , 89e éd., 2736 p. (ISBN 9781420066791, présentation en ligne), p. 9-50.
  3. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  4. a b c d et e (en) « Zirconium dioxide », sur webbook.nist.gov (consulté le ).
  5. a b c et d (de) Georg Brauer, Handbuch der Präparativen Anorganischen Chemie, 3e éd. révisée, vol. 2, Enke, Stuttgart, 1978, p. 1370. (ISBN 3-432-87813-3)
  6. a b c d e et f G. Moulin, J. Faverjeon et G. Béranger, « Zircone - Céramique fonctionnelle », Techniques de l'Ingénieur,‎ , article no N 3210
  7. a b et c (en) Ralph H. Nielsen et Gerhard Wilfing, « Zirconium and Zirconium Compounds », Ullmann's Encyclopedia of Industrial Chemistry,‎ (DOI 10.1002/14356007.a28_543.pub2, lire en ligne)
  8. Engineering property data on selected ceramics, vol. III, Single oxides, Columbus, Ohio, Battele Columbus Laboratories, .
  9. (en) Jane P. Chang, You-Sheng Lin et Karen Chu, « Rapid thermal chemical vapor deposition of zirconium oxide for metal-oxide-semiconductor field effect transistor application », Journal of Vacuum Science & Technology B, vol. 19, no 5,‎ , p. 1782-1787 (DOI 10.1116/1.1396639, Bibcode 2001JVSTB..19.1782C, lire en ligne).
  10. (en) A. A. Madfa, F. A. Al-Sanabani, N. H. Al-Qudami, J. S. Al-Sanabani et A. G. Amran, « Use of Zirconia in Dentistry: An Overview », The Open Biomaterials Journal, vol. 5,‎ , p. 1-9 (DOI 10.2174/1876502501405010001).
  11. (en) Jérôme Chevalier, Laurent Gremillard, Anil V. Virkar et David R. Clarke, « The Tetragonal‐Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends », Journal of the American Ceramic Society, vol. 92, no 9,‎ , p. 1901-1920 (DOI 10.1111/j.1551-2916.2009.03278.x, lire en ligne)
  12. (en) P. Platt, P. Frankel, M. Gass, R. Howells et M. Preuss, « Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys », Journal of Nuclear Materials, vol. 454, nos 1-3,‎ , p. 290-297 (DOI 10.1016/j.jnucmat.2014.08.020, lire en ligne)
  13. (en) A. G. Evans et R. M. Cannon, « Overview no. 48: Toughening of brittle solids by martensitic transformations », Acta Metallurgica, vol. 34, no 5,‎ , p. 761-800 (DOI 10.1016/0001-6160(86)90052-0, lire en ligne)
  14. (en) D. L. Porter, A. G. Evans et A. H. Heuer, « Transformation-toughening in partially-stabilized zirconia (PSZ) », Acta Metallurgica, vol. 27, no 10,‎ , p. 1649-1654 (DOI 10.1016/0001-6160(79)90046-4, lire en ligne)
  15. zircone.fr
  16. (en) M. Hecht, J. Hoffman, D. Rapp, J. McClean, J. SooHoo, R. Schaefer, A. Aboobaker, J. Mellstrom, J. Hartvigsen, F. Meyen, E. Hinterman, G. Voecks, A. Liu, M. Nasr, J. Lewis, J. Johnson, C. Guernsey, J. Swoboda, C. Eckert, C. Alcalde, M. Poirier, P. Khopkar, S. Elangovan, M. Madsen, P. Smith, C. Graves, G. Sanders, K. Araghi, M. de la Torre Juarez, D. Larsen, J. Agui, A. Burns, K. Lackner, R. Nielsen, T. Pike, B. Tata, K. Wilson, T. Brown, T. Disarro, R. Morris, R. Schaefer, R. Steinkraus, R. Surampudi, T. Werne et A. Ponce, « Mars Oxygen ISRU Experiment (MOXIE) », Space Science Reviews, vol. 217, no 1,‎ , article no 9 (DOI 10.1007/s11214-020-00782-8, Bibcode 2021SSRv..217....9H, lire en ligne)
  17. (en) Salah-ud Din et A. Kaleem, « Vickers hardness study of zirconia partially stabilized with lanthanide group oxides », Materials Chemistry and Physics, vol. 53, no 1,‎ , p. 48-54 (DOI 10.1016/S0254-0584(97)02057-9, lire en ligne)
  18. (en) April Gocha, « New ceramic thermal barrier coating is long, strong, and down to get the friction on », sur ceramics.org, The American Ceramic Society, (consulté le ).
  19. Fabrice Crabos, « Caractérisation, évaluation et optimisation de systèmes barrière thermique industriels. Applications aux turbines à gaz », sur theses.fr, Institut national polytechnique de Toulouse, (consulté le ).
  20. (en) Chiara Gionco, Maria C. Paganini, Elio Giamello, Robertson Burgess, Cristiana Di Valentin et Gianfranco Pacchioni, « Cerium-Doped Zirconium Dioxide, a Visible-Light-Sensitive Photoactive Material of Third Generation », The Journal of Physical Chemistry Letters, vol. 5, no 3,‎ , p. 447-451 (PMID 26276590, DOI 10.1021/jz402731s, lire en ligne)
  21. (en) Quan Yuan, Yang Liu, Le-Le Li, Zhen-Xing Li, Chen-Jie Fang, Wen-Tao Duan, Xing-Guo Li et Chun-Hua Yan, « Highly ordered mesoporous titania–zirconia photocatalyst for applications in degradation of rhodamine-B and hydrogen evolution », Microporous and Mesoporous Materials, vol. 124, nos 1-3,‎ , p. 169-178 (DOI 10.1016/j.micromeso.2009.05.006, lire en ligne)
  22. (en) Fabrício Eduardo Bortot Coelho, Chiara Gionco, Maria Cristina Paganini, Paola Calza et Giuliana Magnacca, « Control of Membrane Fouling in Organics Filtration Using Ce-Doped Zirconia and Visible Light », Nanomaterials, vol. 9, no 4,‎ , article no 534 (PMID 30987140, PMCID 6523972, DOI 10.3390/nano9040534, lire en ligne)
  23. (en) Fabrício Eduardo Bortot Coelho, Victor M. Candelario, Estêvão Magno Rodrigues Araújo, Tânia Lúcia Santos Miranda et Giuliana Magnacca, « Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light », Nanomaterials, vol. 10, no 4,‎ , article no 779 (PMID 32325680, PMCID 7221772, DOI 10.3390/nano10040779, lire en ligne)
  24. (en) Pradyut Sengupta, Arjak Bhattacharjee et Himadri Sekhar Maiti, « Zirconia: A Unique Multifunctional Ceramic Material », Transactions of the Indian Institute of Metals, vol. 72,‎ , p. 1981-1998 (DOI 10.1007/s12666-019-01742-9, lire en ligne)
  25. « Grand Seiko », sur grand-seiko.com (consulté le ).

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Sur les autres projets Wikimedia :