« Céramique technique » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
m Wikification.
Pld (discuter | contributions)
m relecture
 
(26 versions intermédiaires par 14 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
{{2autres|les matériaux céramiques techniques|les composites céramiques|Composite à matrice céramique|les [[arts du feu]]|Céramique}}
{{Autre4|les matériaux céramiques techniques|les [[arts du feu]]|Céramique}}
[[Fichier:Si3N4bearings.jpg|redresse=1.2|vignette|Pièces de roulements, composite [[Nitrure de silicium|{{fchim|Si|3|N|4}}]].]]
[[Fichier:Si3N4bearings.jpg|redresse=1.2|vignette|Pièces de roulements, composite [[Nitrure de silicium|{{fchim|Si|3|N|4}}]].]]
[[Fichier:CMCOberflaeche.jpg|redresse=1.2|vignette|Surface d'une céramique composite.]]
[[Fichier:CMCOberflaeche.jpg|redresse=1.2|vignette|Surface d'une céramique composite.]]


La '''céramique technique''' est une branche de la [[céramique]] relative aux applications industrielles, par opposition aux créations artisanales ([[poterie]]), artistiques ([[Céramique|céramique d'art]]) ou [[porcelaine]]s. Cette industrie recouvre la recherche et le développement de céramiques aux propriétés physiques spécifiques : [[Mécanique (science)|mécaniques]], [[Électricité|électriques]], [[Magnétisme|magnétiques]], [[optique]]s, [[Piézoélectricité|piézoélectriques]], [[Ferroélectricité|ferroélectriques]], [[Supraconductivité|supraconductrices]]{{etc.}} L'ASTM ([[ASTM International|American Society for Testing and Materials]]), organisme américain de normalisation, définit une céramique comme « une pièce ayant un corps vitrifié ou non, de structure cristalline ou partiellement cristalline, ou en verre, dont le corps est formé de substances essentiellement minérales et non métalliques, et qui est formé par une masse en fusion qui se solidifie en se refroidissant, ou qui est formé et porté à maturité, en même temps ou ultérieurement, par l'action de la chaleur »<ref name="CTIOA">
La '''céramique technique''' est une branche de la [[science des matériaux]] traitant de la science et de la technologie de matériaux minéraux non métalliques ayant des applications industrielles ou militaires. Elle se distingue radicalement des créations artisanales ([[poterie]]) ou artistiques ([[Céramique|céramique d'art]]) ainsi que des [[porcelaine]]s à usage domestique. Cette discipline traite notamment de la recherche et du développement de céramiques présentant les propriétés physiques particulières, ce qui recouvre la purification de la matière première, l'étude et la production des composés chimiques nécessaires à la production du matériau fini, leur formation dans les constituants, et l'étude de leur structure, de leur composition et de leurs propriétés physiques et chimiques. Ces matériaux sont par exemple des [[oxyde]]s, comme l'[[alumine]] {{fchim|Al|2|O|3}} et le [[dioxyde de zirconium]] {{fchim|ZrO|2}}, des non-oxydes, qui sont souvent des [[Céramique ultraréfractaire|céramiques ultraréfractaires]] ([[borure]]s, [[carbure]]s et [[nitrure]]s de [[Métal réfractaire|métaux réfractaires]], céramiques renforcées de [[silicium]] voire de [[magnésium]]), ou encore des [[Composite à matrice céramique|céramiques composites]], qui sont des combinaisons des deux précédents.
{{Lien web
| langue = en
| url = http://ctioa.org/c/
| titre = Ceramic article – ASTM C 242
| éditeur = Ceramic Tile Institute of America
| consulté le = 19 août 2020
}} :<br>« ''{{lang|en|An article having a glazed or unglazed body of crystalline or partly crystalline structure, or of glass, which body is produced from essentially inorganic, nonmetallic substances and either is formed from a molten mass which solidifies on cooling or is formed and simultaneously or subsequently matured by the action of the heat.}}'' »</ref>.


Une céramique technique peut être entièrement [[cristal]]line ou partiellement cristallisée, avec une organisation à grande échelle au niveau atomique ; les céramiques [[Verre|vitreuses]] peuvent également avoir une structure [[Matière amorphe|amorphe]] dépourvue d'organisation à l'échelle atomique, ou avoir un degré d'organisation limité. L'[[ASTM International|ASTM]] définit une céramique comme « une pièce ayant un corps vitrifié ou non, de structure cristalline ou partiellement cristalline, ou en verre, dont le corps est formé de substances essentiellement minérales et non métalliques, et qui est formé par une masse en fusion qui se solidifie en se refroidissant, ou qui est formé et porté à maturité, en même temps ou ultérieurement, par l'action de la chaleur »<ref name="CTIOA">
Les céramiques techniques peuvent être rangées dans trois catégories :
{{Lien web|langue=en|url=http://ctioa.org/c/|titre=Ceramic article – ASTM C 242|éditeur=Ceramic Tile Institute of America|consulté le=19 août 2020}} :<br>« ''{{lang|en|An article having a glazed or unglazed body of crystalline or partly crystalline structure, or of glass, which body is produced from essentially inorganic, nonmetallic substances and either is formed from a molten mass which solidifies on cooling or is formed and simultaneously or subsequently matured by the action of the heat.}}'' »</ref> ; on peut également ajouter un mode d'obtention à basse température par précipitation de solutions chimiques hautement purifiées, comme la {{Lien|langue=en|trad=Hydrothermal synthesis|fr=synthèse hydrothermale}}, ou par [[polymérisation]], comme le [[procédé sol-gel]].
* les [[oxyde]]s : [[alumine|oxyde d'aluminium]], [[zircone|oxyde de zirconium]] ;
* les non-oxydes, souvent des [[Céramique ultraréfractaire|céramiques ultraréfractaires]] : [[carbure]]s, [[borure]]s, [[nitrure]]s, céramiques composées de [[silicium]] et d'atomes tels que [[tungstène]], [[magnésium]], [[platine]] ou encore [[titane]] ;
* les [[Composite à matrice céramique|céramiques composites]] : combinaison des oxydes et des non-oxydes.


Les propriétés particulières recherchées pour les céramiques techniques peuvent être par exemple de nature [[Mécanique (science)|mécanique]], [[Électricité|électrique]], [[Magnétisme|magnétique]], [[optique]], [[Piézoélectricité|piézoélectrique]], [[Ferroélectricité|ferroélectrique]] ou [[Supraconductivité|supraconductrice]], ce qui rend compte de la très grande variété d'applications de ce type de matériaux, que ce soit en [[Science des matériaux|génie des matériaux]], en [[génie électrique]], en [[génie chimique]] et en [[génie mécanique]]. Les céramiques étant [[Thermostabilité|thermostables]], elles peuvent remplir des fonctions auxquelles les [[polymère]]s et les [[Métal|métaux]] sont impropres. C'est la raison pour laquelle on les retrouve dans des domaines aussi variés que l'[[industrie minière]], l'[[Aérospatiale (discipline scientifique)|industrie aérospatiale]], la [[médecine]], l'[[industrie agroalimentaire]], l'[[industrie chimique]], l'[[industrie des semiconducteurs]], l'[[industrie nucléaire]], le [[Transport d'énergie électrique|transport de l'électricité]] et les [[Guide d'onde|guides]] d'[[Onde électromagnétique|ondes électromagnétiques]]<ref name="978-0-471-47860-7">{{en}} W. David Kingery, H. K. Bowen et Donald R. Uhlmann, ''Introduction to Ceramics'', Wiley-Interscience, {{2e|éd.}}, 1976, {{p.|690}}. {{ISBN|978-0-471-47860-7}}</ref>.
Chacune de ces catégories possède des propriétés particulières.


== Propriétés notables ==
== Généralités ==
Les céramiques demeurent solides à température élevée, résistent bien aux [[Choc thermique (physique)|chocs thermiques]] (comme les [[Système de protection thermique de la navette spatiale américaine|« tuiles » de la navette spatiale américaine]]) ainsi qu'au [[Vieillissement d'un matériau|vieillissement]] et aux [[Météorisation (géologie)|agressions climatiques]] ou chimiques. Les objets en céramique possèdent généralement une bonne [[résistance mécanique]], une faible [[masse volumique]], une [[Dureté (matériau)|dureté]] élevée et une bonne résistance à l'[[Usure des surfaces|usure]]. Des imperfections dans le matériau, comme des [[Fissure (matériau)|fissures]] résultant d'un [[frittage]] incomplet, peuvent toutefois altérer ces propriétés. Leur utilisation est sans danger pour l'[[Homo sapiens|homme]], et nombreuses sont celles qui sont [[Biocompatibilité|biocompatibles]], comme l'[[hydroxyapatite]] {{fchim|Ca|5|(PO|4|)|3|(OH)}} ; elles sont ainsi utilisées comme équipements sanitaires, médicaux ou alimentaires.


Les céramiques ont généralement une faible [[conductivité thermique]]. Elles sont généralement opaques ou [[Translucidité|translucides]] ([[verre]]s [[Matériau amorphe|amorphes]]), mais peuvent aussi être [[Céramique transparente|transparentes]], comme l'[[alumine]] {{fchim|Al|2|O|3}}, le [[nitrure d'aluminium]] AlN, l'[[oxyde d'yttrium(III)]] {{fchim|Y|2|O|3}} et le [[Grenat d'yttrium et d'aluminium|YAG]] {{fchim|Y|3|Al|5|O|12}}, par exemple pour [[jumelles de vision nocturne]] ou systèmes de [[guidage de missile par infrarouge]]. Ce sont d'excellents [[Isolant électrique|isolants électriques]] et elles sont utilisées par exemple comme [[isolateur]]s pour [[Circuit électrique|circuits électriques]] ou [[Ligne à haute tension|lignes à haute tension]]. Dans certaines conditions, notamment des températures [[Cryogénie|cryogéniques]] (quelques dizaines de [[kelvin]]s), certaines céramiques deviennent [[Supraconductivité|supraconductrices]].
Les objets en céramique possèdent généralement une grande [[Résistance des matériaux|résistance]] mécanique, une faible [[masse volumique]], une [[Dureté (matériau)|dureté]] élevée et une grande résistance à l'[[Usure des surfaces|usure]]. Cependant, de petites imperfections dans la céramique, notamment de petites [[Fissure (matériau)|fissures]] dues à un [[frittage]] incomplet, peuvent rendre ces matériaux fragiles.


Dans les céramiques, les [[Liaison chimique|liaisons]] entre [[atome]]s ont un caractère [[Liaison ionique|iono]]-[[Liaison covalente|covalent]]. Les [[liaison ionique|liaisons ioniques]] ne sont pas directionnelles, elles tendent à maximiser les attractions coulombiennes et minimiser les répulsions isocharges, ce qui conduit à des arrangements d'[[anion]]s et de [[cation]]s compacts ; les [[liaison covalente|liaisons covalentes]] sont directionnelles et conduisent quant à elles à des arrangements atomiques plus étendus. Le caractère plutôt ionique ou plutôt covalent d'une [[liaison chimique]] dépend de la différence d'[[électronégativité]] des atomes formant la céramique : d'une manière générale, une différence d'électronégativité élevée favorise les liaisons ioniques tandis qu'une différence faible favorise les liaisons covalentes ; ainsi, le [[fluorure de calcium]] {{fchim|CaF|2}} est essentiellement ionique tandis que le [[carbure de silicium]] SiC est essentiellement covalent, le [[dioxyde de silicium]] {{fchim|SiO|2}} étant intermédiaire.
Les céramiques demeurent solides même à haute température, résistent aux [[Choc thermique (physique)|chocs thermiques]] (comme les [[Système de protection thermique de la navette spatiale américaine|« tuiles » de la navette spatiale américaine]]) et ont une forte résistance au vieillissement et aux agressions climatiques ou chimiques. Elles ont généralement une [[conductivité thermique]] faible. Elles sont opaques (céramiques cristallines) ou translucides (verres amorphes). Ce sont d'excellents [[Isolant électrique|isolants électriques]] et sont utilisées par exemple comme isolateurs pour [[circuit électrique]] ou [[ligne à haute tension]]. Dans certaines conditions, notamment des températures très basses (quelques dizaines de [[kelvin]]s), certaines céramiques deviennent [[Supraconductivité|supraconductrices]].

Les céramiques sont sans danger pour l'homme et pour l'environnement, et nombreuses sont celles qui sont [[Biocompatibilité|biocompatibles]]. Elles sont entre autres utilisées pour les équipements sanitaires, médicaux ou alimentaires et horloger.

== Structure ==

Dans les céramiques, les [[Liaison chimique|liaisons]] entre [[atome]]s ont un caractère [[Liaison ionique|iono]]-[[Liaison covalente|covalent]]. Les [[liaison ionique|liaisons ioniques]] ne sont pas directionnelles, elles tendent à maximiser les attractions coulombiennes et minimiser les répulsions isocharges ce qui conduit à des arrangements d'[[anion]]s et de [[cation]]s très compacts ; les [[liaison covalente|liaisons covalentes]] sont directionnelles et conduisent quant à elles à des arrangements atomiques moins compacts. Le caractère plutôt ionique ou plutôt covalent d'une liaison atomique dépend de la différence d'[[électronégativité]] des éléments formant la céramique : d'une manière générale, plus la différence d'électronégativité est grande, plus la liaison est ionique ; plus cette différence est faible, et plus la liaison est covalente. Ainsi, le [[fluorure de calcium]] {{fchim|CaF|2}} est ionique à 89 %, tandis que le [[carbure de silicium]] SiC ne l'est qu'à 12 % alors que la silice {{fchim|SiO|2}} est ionique à 51 %.


== Synthèse ==
== Synthèse ==
Les deux grands types de synthèse des matériaux céramiques sont dits par ''voie sèche'' et par ''voie humide'', selon les conditions expérimentales et la mise en forme souhaitée.


=== Par ''voie sèche'' ===
Différentes méthodes existent, elles diffèrent de par le milieu « sec » ou « humide », les conditions expérimentales, la mise en forme souhaitée.
On applique un traitement thermique approprié, typiquement autour de {{tmp|1200|°C}}, à un mélange de [[Précurseur (chimie)|précurseurs]] solides en poudre afin d'obtenir le matériau céramique souhaité. Il s'agit d'une réaction en phase solide à haute température employée surtout pour l'obtention de pièces massives, c'est-à-dire d'au moins {{unité|1|mm}} d'épaisseur. Les poudres sont finement broyées et portées à une température élevée mais inférieure à leur [[point de fusion]] de sorte que la [[réaction chimique]] se déroule au niveau des surfaces de contact entre les grains. Ce sont par exemple les réactions :

:[[Oxyde de magnésium|MgO]] + [[Oxyde de fer(III)|{{fchim|Fe|2|O|3}}]] ⟶ [[Magnésioferrite|{{fchim|MgFe|2|O|4}}]] ;
=== Méthodes par ''voie sèche'' ===
:[[Carbonate de baryum|{{fchim|BaCO|3}}]] + [[Dioxyde de titane|{{fchim|TiO|2}}]] ⟶ [[Titanate de baryum|{{fchim|BaTiO|3}}]] + [[Dioxyde de carbone|{{fchim|CO|2|↑}}]].

==== Méthode céramique conventionnelle ====

C'est une réaction en phase solide à haute température donc par voie sèche. Le but est d'obtenir à partir d'un mélange de composés solides en poudre, en proportion [[stœchiométrie|stœchiométriques]], un nouveau produit par un traitement thermique approprié. Cette technique sert plutôt à la réalisation de pièces massives, minimum de l'ordre du millimètre en épaisseur.
#[[Réaction chimique]] : deux oxydes naturels sont broyés et mélangés à température élevée (~{{température|1200|°C}}) mais en dessous de leur [[température de fusion]], les poudres étant solides, la réaction se passe à la surface de contact entre particules.
#[[Frittage]] : processus physico-chimique par lequel la poudre de fines particules est densifiée en dessous de sa température de fusion en un matériau massif, résistant et plus ou moins compact. Le frittage est nécessaire parce que la température de fusion des céramiques est très haute (jusqu'à {{température|2000|°C}} voire bien au-delà), la mise en forme ne peut donc pas se faire par coulée ou moulage de matière fondue ; de plus leur déformation plastique est faible ce qui rend le [[forgeage]] et le [[laminage]] difficiles. Cette synthèse nécessite plusieurs étapes techniques :
#Préparation des poudres : c'est un travail de diffusion et dispersion des poudres par mélangeage et broyage. Il permet d'améliorer la [[granulométrie]] et d'[[mélange homogène|homogénéiser]] la poudre de départ.
#Mise en forme : processus servant à consolider les poudres. Suivant la mise en forme désirée et l'état, sec ou humide, du matériau il faut choisir entre plusieurs techniques de façonnage : pressage, extrusion, injection, coulage... Mises en formes détaillées plus bas.
#Traitement thermique : peut dans un premier temps conduire au [[wikt:déliantage|déliantage]], [[wikt:décarbonatation|décarbonatation]], élimination d'eau additionnelle si nécessaire. Il provoque des transformations physico-chimiques qui modifient la nature des phases en présence et la microstructure du matériau ce qui permet de densifier les poudres et obtenir la phase désirée. Le frittage est un phénomène particulier dû au traitement thermique.
#Finition : [[usinage]], [[polissage]], [[revêtement (technique)|revêtement]].

Exemples :
:[[Oxyde de magnésium|MgO]] + [[Oxyde de fer(III)|{{fchim|Fe|2|O|3}}]] ⟶ {{Lien|langue=en|trad=Magnesioferrite|fr=Magnésioferrite|texte={{fchim|MgFe|2|O|4}}}} ;
:[[Carbonate de baryum|{{fchim|BaCO|3}}]] + [[Dioxyde de titane|{{fchim|TiO|2}}]] ⟶ [[Titanate de baryum|{{fchim|BaTiO|3}}]] + [[Dioxyde de carbone|{{fchim|CO|2}}]] ↑.

==== Ablation laser ====

{{article détaillé|Ablation laser}}

Ces techniques permettent la réalisation de couches très minces de l'ordre du nanomètre.

=== Méthodes par ''voie humide'' ===

==== Précipitation simultanée en solution ====

Le {{pas clair
|1=travail de diffusion nécessaire est moindre que pour la méthode céramique}} les températures et les durées du traitement thermique sont donc plus faibles. De plus la taille et la morphologie des poudres formées peuvent être contrôlées. Ce sont des avantages certains sur la méthode solide conventionnelle. Ces techniques permettent la réalisation de couches minces de l'ordre du micromètre.

===== Coprécipitation d'hydroxydes =====

Cette technique consiste à faire coprécipiter des précurseurs en phase aqueuse, [[sel (chimie)|sels métalliques]], par action d'une [[base (chimie)|base]]. Les [[précipité]]s sont de la forme {{fchim|M|1|M|2|(OH)|''x''|·''z''H|2|O}}. L'eau est ensuite éliminée par traitement thermique.

* Exemple 1 : préparation du [[Ferrite (céramique ferromagnétique)|ferrite]] de [[cobalt]] {{fchim|CoFe|2|O|4}} :
** [[Précipité|Coprécipitation]] de [[chlorure]]s [[métal]]liques par action de l'[[hydroxyde de sodium]] NaOH :
*:[[Chlorure de cobalt(II)|{{fchim|CoCl|2}}]] + 2 [[Chlorure de fer(III)|{{fchim|FeCl|3|·6H|2|O}}]] + 6 [[Hydroxyde de sodium|NaOH]] ⟶ [[Hydroxyde de cobalt(II)|{{fchim|Co(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] + 6 [[Chlorure de sodium|NaCl]] + 6 [[Eau|{{fchim|H|2|O}}]] ;
** Traitement thermique ({{tmp|700|°C}} vs {{tmp|1200|°C}} pour la méthode céramique) :
*:[[Hydroxyde de cobalt(II)|{{fchim|Co(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] ⟶ {{fchim|CoFe|2|O|4}} + 4 [[Eau|{{fchim|H|2|O}}]].

* Exemple 2 : préparation du ferrite [[Groupe du spinelle|spinelle]] mixte {{fchim|Ni|0,5|Zn|0,5|Fe|2|O|4}}
** Coprécipitation de [[chlorure]]s métalliques par action de la soude :
*: 0,5 [[Chlorure de nickel(II)|{{fchim|NiCl|2|·6H|2|O}}]] + 0,5 [[Chlorure de zinc|{{fchim|ZnCl|2}}]] + 2 [[Chlorure de fer(III)|{{fchim|FeCl|3|·6H|2|O}}]] + 8 [[Hydroxyde de sodium|NaOH]] ⟶ 0,5 [[Hydroxyde de nickel(II)|{{fchim|Ni(OH)|2}}]] + 0,5 [[Hydroxyde de zinc|{{fchim|Zn(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] + 8 [[Chlorure de sodium|NaCl]] + 12 [[Eau|{{fchim|H|2|O}}]] ;
** Traitement thermique ({{tmp|700|°C}}) :
*: 0,5 [[Hydroxyde de nickel(II)|{{fchim|Ni(OH)|2}}]] + 0,5 [[Hydroxyde de zinc|{{fchim|Zn(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] ⟶ {{fchim|Ni|0,5|Zn|0,5|Fe|2|O|4}} + 4 [[Eau|{{fchim|H|2|O}}]].


Par ailleurs, les techniques d'[[ablation laser]] permettent la réalisation de [[Couche mince|couches minces]] de l'ordre du [[nanomètre]].
* Importance du pH : il faut se placer à un [[potentiel hydrogène|pH]] auquel les [[hydroxyde]]s métalliques coexistent, dans le cas présent pH de 9-10, sinon il n'y a pas précipitation.


===== Coprécipitation d'oxalates =====
=== Par ''voie humide'' ===
==== Coprécipitation en solution ====
Ce type de procédé est plus rapide et requiert des températures moins élevées que la voie sèche. Il permet de mieux contrôler la texture des poudres formées et peut être utilisé pour réaliser des [[Couche mince|couches minces]] de l'ordre du [[micromètre]]. Il consiste notamment en la précipitation simultanée en phase aqueuse de [[Sel (chimie)|sels]] [[métal]]liques sous l'action d'une [[base forte]], donnant des [[hydroxyde]]s [[Hydrate|hydratés]] {{fchim|M|1|M|2|(OH)|''x''|·''z''H|2|O}}, ou sous l'action de l'[[acide oxalique]] HOOC–COOH, donnant des [[oxalate]]s hydratés {{fchim|M|1|M|2|(C|2|O|4|)|''x''|·''z''H|2|O}}, l'eau de ces composés étant ensuite éliminée par chauffage. Dans la voie des hydroxydes métalliques obtenus sous l'action d'une base forte, il est important de se placer à un [[Potentiel hydrogène|pH]] auquel ces hydroxydes coexistent, dans le cas présent à un pH de l'ordre de 9 à 10, afin qu'il y ait bien coprécipitation.


Par exemple, le [[Ferrite (céramique ferromagnétique)|ferrite]] de [[cobalt]] {{fchim|CoFe|2|O|4}} peut être obtenu en faisant [[Précipité|coprécipiter]] des [[chlorure]]s [[métal]]liques sous l'action de l'[[hydroxyde de sodium]] NaOH puis en chauffant les hydroxydes obtenus à environ {{tmp|700|°C}} :
Coprécipitation d'[[oxalate]]s métalliques par action de l'[[acide oxalique]] HOOC–COOH. Les précipités sont de la forme {{fchim|M|1|M|2|(C|2|O|4|)|''x''|·''z''H|2|O}}. L'eau et les oxalates sont ensuite éliminés par traitement thermique.
:[[Chlorure de cobalt(II)|{{fchim|CoCl|2}}]] + 2 [[Chlorure de fer(III)|{{fchim|FeCl|3|·6H|2|O}}]] + 6 [[Hydroxyde de sodium|NaOH]] ⟶ [[Hydroxyde de cobalt(II)|{{fchim|Co(OH)|2|↓}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3|↓}}]] + 6 [[Chlorure de sodium|NaCl]] + 6 [[Eau|{{fchim|H|2|O}}]] ;
:[[Hydroxyde de cobalt(II)|{{fchim|Co(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] ⟶ {{fchim|CoFe|2|O|4}} + 4 [[Eau|{{fchim|H|2|O↑}}]] à {{tmp|700|°C}}.


Le ferrite [[Groupe du spinelle|spinelle]] mixte {{fchim|Ni|0,5|Zn|0,5|Fe|2|O|4}} peut être obtenu de manière semblable :
*Exemple :
: 0,5 [[Chlorure de nickel(II)|{{fchim|NiCl|2|·6H|2|O}}]] + 0,5 [[Chlorure de zinc|{{fchim|ZnCl|2}}]] + 2 [[Chlorure de fer(III)|{{fchim|FeCl|3|·6H|2|O}}]] + 8 [[Hydroxyde de sodium|NaOH]] ⟶ 0,5 [[Hydroxyde de nickel(II)|{{fchim|Ni(OH)|2|↓}}]] + 0,5 [[Hydroxyde de zinc|{{fchim|Zn(OH)|2|↓}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3|↓}}]] + 8 [[Chlorure de sodium|NaCl]] + 12 [[Eau|{{fchim|H|2|O}}]] ;
** Coprécipitation de chlorures métalliques par action de l'acide oxalique :
*: {{Lien|langue=en|trad=Titanium(III) chloride|fr=Chlorure de titane(III)|texte={{fchim|TiCl|3}}}} + [[Chlorure de baryum|{{fchim|BaCl|2|·2H|2|O}}]] + 3 [[Eau|{{fchim|H|2|O}}]] + 2 [[Acide oxalique|{{fchim|H|2|(C|2|O|4|)}}]] {{fchim|BaTiO(C|2|O|4|)|2|·4H|2|O}} + 6 [[Acide chlorhydrique|HCl]].
: 0,5 [[Hydroxyde de nickel(II)|{{fchim|Ni(OH)|2}}]] + 0,5 [[Hydroxyde de zinc|{{fchim|Zn(OH)|2}}]] + 2 [[Oxyhydroxyde de fer(III)|{{fchim|Fe(OH)|3}}]] {{fchim|Ni|0,5|Zn|0,5|Fe|2|O|4}} + 4 [[Eau|{{fchim|H|2|O↑}}]] à {{tmp|700|°C}}.
** Traitement thermique ({{tmp|700|°C}} contre {{tmp|1200|°C}} pour la méthode céramique) :
*: {{fchim|BaTiO(C|2|O|4|)|2|·4H|2|O}} ⟶ [[Titanate de baryum|{{fchim|BaTiO|3}}]] + 2 [[Dioxyde de carbone|{{fchim|CO|2}}]] ↑ + 2 [[Monoxyde de carbone|CO]] ↑.


''A contrario'', le [[titanate de baryum]] {{fchim|BaTiO|3}} peut être obtenu en faisant coprécipiter des chlorures métalliques sous l'action de l'acide oxalique, écrit {{fchim|H|2|(C|2|O|4|)}} par commodité ci-dessous :
==== Méthode sol-gel ====
: [[Chlorure de titane(III)|{{fchim|TiCl|3}}]] + [[Chlorure de baryum|{{fchim|BaCl|2|·2H|2|O}}]] + 3 [[Eau|{{fchim|H|2|O}}]] + 2 [[Acide oxalique|{{fchim|H|2|(C|2|O|4|)}}]] ⟶ {{fchim|BaTiO(C|2|O|4|)|2|·4H|2|O↓}} + 6 [[Acide chlorhydrique|HCl]] ;
: {{fchim|BaTiO(C|2|O|4|)|2|·4H|2|O}} ⟶ [[Titanate de baryum|{{fchim|BaTiO|3}}]] + 2 [[Dioxyde de carbone|{{fchim|CO|2|↑}}]] + 2 [[Monoxyde de carbone|CO↑]] à {{tmp|700|°C}}.


{{article détaillé|Procédé sol-gel}}
==== Procédé sol-gel ====
[[Fichier:SolGelCartoonImproved2022.svg|vignette|Représentation simplifiée de la condensation du [[Orthosilicate de tétraéthyle|{{Abréviation|TEOS|TetraEthylOrthoSilicate}}]] {{fchim|Si(OEt)|4}}.]]


Le procédé sol-gel permet de fabriquer un [[polymère inorganique]] par des réactions chimiques simples et à une température proche de la [[température]] ambiante ({{tmp|20|150|°C}}). La synthèse est effectuée à partir d'[[alcoolate]]s de formule {{fchim|M(OR)|''n''}} où M est un [[métal]] ou le [[silicium]] et R un groupement organique [[alkyle]] {{fchim|C|''n''|H|2''n''+1}}. Un des intérêts de ce procédé est que ces précurseurs existent pour un grand nombre de métaux et non-métaux. Ils sont soit liquides soit solides, dans ce cas ils sont, pour la plupart, solubles dans des [[solvant]]s usuels. Il est donc possible de préparer des [[mélange homogène|mélanges homogènes]] des [[monomère]]s (précurseurs) ou [[oligomère]]s. Les réactions chimiques simples à la base du procédé sont déclenchées lorsque les précurseurs sont mis en présence d’eau : l'[[hydrolyse]] des groupements [[alcoxyle]]s intervient tout d’abord, puis la condensation des produits hydrolysés conduit à la gélification du système.
Le [[procédé sol-gel]] permet de fabriquer un [[polymère inorganique]] par des [[Réaction chimique|réactions chimiques]] simples et à une température relativement proche de la température ambiante, c'est-à-dire entre {{unité|20|et=150|°C}}. La synthèse s'effectue à partir d'[[alcoolate]]s de formule {{fchim|''M''(O''R'')|''n''}},''M'' est un [[métal]] ou un atome de [[silicium]], et ''R'' un groupe organique [[alkyle]] {{fchim|C|''n''|H|2''n''+1}}, par exemple l'[[orthosilicate de tétraéthyle]] {{fchim|Si(OCH|2|CH|3|)|4}} ({{Abréviation|TEOS|TetraEthylOrthoSilicate}}). L'un des intérêts de ce procédé est que ces [[Précurseur (chimie)|précurseurs]] existent pour un grand nombre de métaux et de [[métalloïde]]s. Ils sont soit liquides soit solides, auquel cas ils sont, pour la plupart, solubles dans les [[solvant]]s usuels. Il est donc possible de préparer des [[Mélange homogène|mélanges homogènes]] de [[monomère]]s (précurseurs) ou d'[[oligomère]]s. Les réactions chimiques simples à la base du procédé sont déclenchées lorsque les précurseurs sont mis en présence d'eau : l'[[hydrolyse]] des groupes [[alcoolate]] intervient en premier, puis la [[Réaction de condensation|condensation]] des produits hydrolysés conduit à la [[gélification]] du système. Ceci peut être illustré par les réactions de production du [[dioxyde de silicium]] {{fchim|SiO|2}} à partir d'alcoolates de type {{fchim|Si(O''R'')|4}}, amorcées par leur hydrolyse donnant un intermédiaire hydroxylé {{fchim|HOSi(O''R'')|3}} à partir duquel se propage la réaction de polymérisation formant une série de liaison [[siloxane]] Si–O–Si avec libération d'eau {{fchim|H|2|O}} et d'[[Alcool (chimie)|alcools]] ''R''OH :
:{{fchim|Si(O''R'')|4}} + {{fchim|H|2|O}} ⟶ {{fchim|HOSi(O''R'')|3}} + ''R''OH.
Le procédé sol-gel permet de mettre le matériau final sous diverses formes, parmi lesquelles les monolithes (matériaux massifs de quelques mm{{exp|3}} à quelques dizaines de cm{{exp|3}}) et les films minces (de quelques nanomètres à quelques dizaines de micromètres d'épaisseur).
:{{fchim|(O''R'')|3|SiOH}} + {{fchim|HOSi(O''R'')|3}} ⟶ {{fchim|(O''R'')|3|Si–O–Si(O''R'')|3}} + {{fchim|H|2|O}} ;
:{{fchim|(O''R'')|3|SiO''R''}} + {{fchim|HOSi(O''R'')|3}} ⟶ {{fchim|(O''R'')|3|Si–O–Si(O''R'')|3}} + ''R''OH.


L'hydrolyse complète des précurseurs peut être obtenue généralement à travers un excès d'eau ou l'utilisation de [[catalyse]]urs d'hydrolyse comme l'[[acide acétique]] {{fchim|CH|3|COOH}} ou l'[[acide chlorhydrique]] HCl. La formation d'[[Intermédiaire réactionnel|intermédiaires]] tels que {{fchim|(O''R'')|2|Si(OH)|2}} ou {{fchim|(O''R'')|3|SiOH}} peut conduire à des hydrolyses partielles. Le procédé sol-gel permet de mettre le matériau final sous diverses formes, parmi lesquelles les monolithes, matériaux massifs de quelques [[Millimètre cube|millimètres cubes]] à quelques dizaines de [[Centimètre cube|centimètres cubes]], et les [[Couche mince|couches minces]], de quelques [[nanomètre]]s à quelques dizaines de [[micromètre]]s d'épaisseur.
*Exemple : Synthèse de [[dioxyde de silicium]] {{fchim|SiO|2}} par procédé sol-gel.
** Hydrolyse :
*: {{fchim|Si(OR)|4}} + 4 [[Eau|{{fchim|H|2|O}}]] ⟶ {{Lien|langue=en|trad=Orthosilicic acid|fr=Acide orthosilicique|texte={{fchim|Si(OH)|4}}}} + 4 [[Alcool (chimie)|ROH]].
** Condensation :
*** Par [[alcoxolation]] :
*:: {{Lien|langue=en|trad=Orthosilicic acid|fr=Acide orthosilicique|texte={{fchim|Si(OH)|4}}}} + {{fchim|Si(OR)|4}} ⟶ 2 [[Dioxyde de silicium|{{fchim|SiO|2}}]] + 4 [[Alcool (chimie)|ROH]].
*** Par [[oxolation]] :
*:: 2 {{Lien|langue=en|trad=Orthosilicic acid|fr=Acide orthosilicique|texte={{fchim|Si(OH)|4}}}} ⟶ 2 {{fchim|Si(O|2|)|2}} + 4 [[Eau|{{fchim|H|2|O}}]].


== Mise en forme ==
== Mise en forme ==
=== À partir d'une poudre céramique ===
* '''[[Frittage]]''' — Le frittage est un processus physique reposant sur la [[diffusion de la matière]] à travers les surfaces de contact entre grains de céramique pour aboutir à faire fusionner ces grains et obtenir une pièce solide formée d'un matériau céramique compact. Dans la mesure où ce procédé de [[Mise en forme d'un matériau|mise en forme]] ne nécessite pas d'atteindre le [[point de fusion]] du matériau, il peut être employé en [[métallurgie des poudres]] pour traiter des métaux particulièrement [[Métal réfractaire|réfractaires]] comme le [[tungstène]], le [[rhénium]], l'[[osmium]], le [[Tantale (chimie)|tantale]], ainsi que des [[Céramique ultraréfractaire|céramiques ultraréfractaires]] comme les carbures d'[[Carbure d'hafnium|hafnium]], de [[Carbure de tantale|tantale]], de [[Carbure de niobium|niobium]] ou de [[Carbure de zirconium|zirconium]], dont le point de fusion dépasse les {{tmp|2000|°C}}, de sorte qu'ils ne peuvent être traités par [[coulage]], [[extrusion]] ou [[moulage par injection]] de matière fondue, et dont la résistance aux [[Déformation plastique|déformations plastiques]] rend le [[forgeage]] et le [[laminage]] peu praticables.


:Pour un frittage donnant une céramique de bonne qualité, les poudres doivent préalablement être broyées le plus finement possibles afin d'en améliorer la [[granulométrie]] et d'[[Mélange homogène|homogénéité]]. Elles sont ensuite mises en forme par [[Pressage (matériaux)|pressage]], extrusion, injection, coulage ou d'autres techniques de façonnage dépendant de la forme désirée, du degré d'humidité des poudres, ou encore de la nature du matériau. Le traitement thermique peut dans un premier temps conduire au déliantage, à la décarbonatation et à la déshydratation des poudres, puis assure la diffusion du matériau responsable du processus de frittage et de la consolidation de la céramique. La finition peut faire intervenir des étapes d'[[usinage]], de [[polissage]] ou de [[Revêtement (technique)|revêtement]] de la pièce obtenue.
=== Mise en forme à partir d'une poudre ===


* '''[[Pressage (matériaux)|Pressage]]''' — Dans le '''pressage uniaxial''', la poudre est compactée dans une [[Matrice (technologie)|matrice]] rigide à l'aide d'un [[poinçon]]. Le [[Moule (outil)|moule]] de pressage est métallique et les parties en contact avec la poudre peuvent être traitées pour résister à l'abrasion et à la [[corrosion]]. Cette technique conduit à la réalisation de pièces de forme simple, comme des joints ou des bagues de [[roulement mécanique]]. Dans le '''pressage isostatique''', la poudre est compactée dans un contenant flexible maintenu par un moule support rigide. L'application de la pression se fait par l'intermédiaire d'un fluide à base d'huile et d'eau. Cette technique conduit à la réalisation de pièces de forme complexe, comme des tubes ou des [[Bougie d'allumage|bougies d'allumage]].
{{article détaillé|Pressage (matériaux)}}


:Le frittage de céramiques techniques peut faire également appel à des techniques de '''[[pressage à chaud]]''', voire de '''[[pressage isostatique à chaud]]'''.
==== Pressage uniaxial ====


=== Avec un liant polymère ===
La poudre est compactée dans une [[Matrice (technologie)|matrice]] rigide à l'aide d'un [[poinçon]]. Le [[Moule (outil)|moule]] de [[Pressage (matériaux)|pressage]] est métallique et les parties en contact avec la poudre peuvent être traitées pour résister à l'abrasion et à la corrosion. Cette technique conduit à la réalisation de pièces de forme simple (joints, bagues...).
[[Fichier:Extrusion process 1.png|vignette|300px|Schéma simplifié de la technique d'extrusion. 1 : Vis, 2 : pâte plastique à mettre en forme, 3 : fente à taille réglable, 4 : matériau mis en forme.]]Le mélange polymère-céramique permet de mettre en forme une poudre céramique, ce qui permet l'obtention d'une pièce composite. Il est nécessaire de faire une étape de frittage à postériori de ces méthodes pour obtenir une pièce en céramique seule.
* '''[[Extrusion]]''' — Le mélange préalablement plastifié et désaéré, est poussé à travers une [[Filière (fabrication)|filière]] de géométrie donnée à l'aide d'une vis. Après extrusion, les pièces sont coupées à la longueur désirée, puis subissent les traitements appropriés. Cette technique conduit à la réalisation de pièces aux formes complexes et de grandes dimensions, comme des [[Tube (forme)|tubes]] ou des [[tuyau]]x.
* '''[[Impression 3D|Fabrication additive]]''' — Diverses techniques de fabrication additive peuvent être utilisées pour former des composants en céramique, mais la nature réfractaire des céramiques empêche l'utilisation des [[Impression 3D#Fusion sur lit de poudre (Powder Bed Fusion)|technologies à rayon]] (SLS, EBM). Cependant les procédés de [[Impression 3D#Extrusion de mati%C3%A8re (Material Extrusion)|fabrication additive par extrusion]](FFF), similaires au procédé d'extrusion, permettent de créer une pièce en déplaçant la buse d'extrusion pour faire du volume<ref>{{Article |langue=en |titre=3D printing of ceramics: A review |périodique=Journal of the European Ceramic Society |volume=39 |numéro=4 |date=2019-04-01 |issn=0955-2219 |doi=10.1016/j.jeurceramsoc.2018.11.013 |lire en ligne=https://www.sciencedirect.com/science/article/pii/S0955221918306782 |consulté le=2021-02-24 |pages=661–687 }}</ref>. Projeter une poudre céramique sur une [[résine photosensible]] ou inversement est aussi une technique adaptée aux céramiques ([[Impression 3D#Projection de liant (Binder Jetting)|Binder Jetting]] ou [[Impression 3D#Projection de mati%C3%A8re (Material Jetting)|Material Jetting]])<ref>{{Article |langue=en |prénom1=J. A. |nom1=Gonzalez |prénom2=J. |nom2=Mireles |prénom3=Y. |nom3=Lin |prénom4=R. B. |nom4=Wicker |titre=Characterization of ceramic components fabricated using binder jetting additive manufacturing technology |périodique=Ceramics International |volume=42 |numéro=9 |date=2016-07-01 |issn=0272-8842 |doi=10.1016/j.ceramint.2016.03.079 |lire en ligne=https://www.sciencedirect.com/science/article/pii/S0272884216302127 |consulté le=2021-02-24 |pages=10559–10564 }}</ref>.


* '''[[Moulage par injection de poudre]]''' — Le mélange fluidifié est introduit dans un [[Moule (outil)|moule]] ayant la forme de la pièce à fabriquer. Le mélange thermofusible est chauffé dans une enceinte puis forcé à travers une buse dans le moule dont la température est inférieure au point de fusion du mélange. Après [[solidification]], par abaissement de la température, la pièce est éjectée du moule. Cette technique conduit à la réalisation de pièces de formes simples ou complexes en série dont l'épaisseur maximale est de {{unité|1|cm}}.
==== Pressage isostatique ====


=== Avec un liant liquide ===
La poudre est compactée dans un sac flexible maintenu par un moule support rigide. L'application de la pression se fait par l'intermédiaire d'un fluide à base d'huile et d'eau. Cette technique conduit à la réalisation de pièces de forme complexe (tubes, bougies d'allumage...).
* '''[[Coulage]]''' — Dans le '''coulage en moule poreux''', le mélange est versé dans un moule ayant la forme de la pièce à fabriquer. La pièce est laissée se solidifier. Cette technique conduit à la réalisation de pièces volumineuses. Dans le '''coulage sous pression''', une pression est appliquée à la suspension de [[coulage]] dans un moule poreux. Le gradient de pression force le fluide à travers le moule poreux et à travers la couche en formation, ce qui permet de diminuer le temps de prise de la suspension par rapport au coulage classique. Cette technique, particulièrement utilisée dans le domaine des céramiques traditionnelles conduit à la réalisation de pièces volumineuses. La productivité peut être élevée.

=== Mise en forme à partir d'une pâte plastique ===

{{article détaillé|Extrusion|Moulage par injection}}

[[Fichier:Extrusion process 1.png|vignette|300px|Schéma simplifié de la technique d'extrusion. 1 : Vis, 2 : pâte plastique à mettre en forme, 3 : fente à taille réglable, 4 : matériau mis en forme.]]

==== Extrusion ====

La pâte préalablement plastifiée et désaérée, est poussée à travers une [[Filière (fabrication)|filière]] de géométrie donnée à l'aide d'une vis. Après extrusion, les pièces sont coupées à la longueur désirée, puis subissent les traitements appropriés. Cette technique conduit à la réalisation de pièces à forme complexe et de grandes dimensions (tubes, tuyaux...).

==== Moulage par injection ====

Le mélange fluidifié est introduit dans un [[Moule (outil)|moule]] ayant la forme de la pièce à fabriquer. Le mélange thermofusible est chauffé dans une enceinte puis forcé à travers une buse dans le moule dont la température est inférieure au point de fusion du mélange. Après solidification, par abaissement de la température, la pièce est éjectée du moule. Cette technique conduit à la réalisation de pièces de forme simple ou complexe en série dont l'épaisseur maximale est de {{unité|1 cm}}.

=== Mise en forme à partir d'une pâte liquide ===

{{article détaillé|Coulage}}

==== Coulage en moule poreux ====

Le mélange est versé dans un moule ayant la forme de la pièce à fabriquer. La pièce est laissée se solidifier. Cette technique conduit à la réalisation de pièces volumineuses.

==== Coulage sous pression ====

Une pression est appliquée à la suspension de [[coulage]] dans un moule poreux. Le gradient de pression force le fluide à travers le moule poreux et à travers la couche en formation, ce qui permet de diminuer le temps de prise de la suspension par rapport au coulage classique. Cette technique, particulièrement utilisée dans le domaine des céramiques traditionnelles conduit à la réalisation de pièces volumineuses. La productivité peut être élevée.

=== Mise en forme de couches minces ===


==== Par enduction ====
[[Fichier:SolGel DipCoating1.jpg|redresse=1.6|vignette|Étapes du ''{{lang|en|dip coating}}''.]]
[[Fichier:SolGel DipCoating1.jpg|redresse=1.6|vignette|Étapes du ''{{lang|en|dip coating}}''.]]
[[Fichier:SolGel SpinCoating.jpg|redresse=1.6|vignette|Étapes de l'enduction centrifuge (ou ''{{lang|en|spin coating}}'').]]
[[Fichier:Spincoating.svg|redresse=1.6|vignette|Étapes de l'enduction centrifuge (ou ''{{lang|en|spin coating}}'').]]


L'[[enduction]] se fait notamment à partir d'une pâte liquide issue du [[procédé sol-gel]].
L'[[enduction]] se fait notamment à partir d'une pâte liquide issue du [[procédé sol-gel]].


* '''[[Enduction par trempage]]''' — Dite ''{{lang|en|dip coating}}'' en anglais, c'est une technique de mise en forme de [[Couche mince|couches minces]] qui consiste à immerger le substrat de la pièce dans une cuve contenant la céramique en pâte liquide, extraire la pièce de la cuve et laisser s'écouler la couche. La pièce enrobée est ensuite séchée. Ce processus se déroule donc généralement en trois étapes :
==== Enduction par trempage ====
** immersion : le substrat est immergé dans la solution, contenant le matériau à mettre en forme, à une vitesse constante et préférablement sans secousses ;
** temps de séjour : le substrat est laissé complètement immergé et immobile pour permettre au matériau de bien s'y appliquer et l'enrober ;
** extraction : le substrat est extrait, de nouveau à vitesse constante et sans secousses. La vitesse d'extraction influe sur l'épaisseur de la couche : l'épaisseur de la couche est d'autant plus fine que la vitesse d'extraction du substrat est grande, mais elle dépend aussi de la concentration de soluté et du solvant.


* '''[[Enduction centrifuge]]''' — Dite ''{{lang|en|spin coating}}'' en anglais, c'est une technique de mise en forme de couches minces qui consiste à poser un excès de matériau en solution, à mettre en forme sur le [[Substrat (électronique)|substrat]] — généralement un [[wafer]] de [[semiconducteur]] — et à faire tourner le tout à vitesse élevée pour étaler le fluide sur toute la surface par [[centrifugation]]. La rotation continue pendant que le fluide dépasse les bords du substrat, jusqu'à ce que la couche ait l'épaisseur voulue. Par conséquent, la couche est d'autant plus fine que la vitesse de rotation est élevée, mais elle dépend aussi de la [[Concentration massique|concentration]] de [[soluté]] et du [[solvant]].
{{article détaillé|Enduction par trempage}}

L'enduction par trempage (''{{lang|en|dip coating}}'' en anglais) est une technique de mise en forme de couches minces, elle consiste à immerger le substrat de la pièce dans une cuve contenant la céramique en pâte liquide, extraire la pièce de la cuve et laisser s'écouler la couche. La pièce enrobée est ensuite séchée. Le processus de ''{{lang|en|dip coating}}'' se fait donc généralement en trois étapes :
*Immersion : le substrat est immergé dans la solution, contenant le matériau à mettre en forme, à une vitesse constante et préférablement sans secousses.
*Le temps de séjour : le substrat est laissé complètement immergé et immobile pour permettre au matériau de bien s'y appliquer et l'enrober.
*L'extraction : le substrat est extrait, de nouveau à vitesse constante et sans secousses. La vitesse d'extraction influe sur l'épaisseur de la couche : l'épaisseur de la couche est d'autant plus fine que la vitesse d'extraction du substrat est grande, mais elle dépend aussi de la concentration de soluté et du solvant.

==== Enduction centrifuge ====

{{article détaillé|Enduction centrifuge}}

L'enduction centrifuge (''spin coating'' en anglais) est une technique de mise en forme de couches minces. Elle consiste à poser un excès de matériau (en solution) à mettre en forme sur le [[Substrat (électronique)|substrat]] un [[wafer]] de [[semi-conducteur]] en général, et à faire tourner ensuite le tout à haute vitesse pour étaler le fluide sur toute la surface par [[centrifugation]]. La rotation continue pendant que le fluide dépasse les bords du substrat, jusqu'à ce que la couche ait l'épaisseur voulue. Par conséquent, l'épaisseur de la couche est d'autant plus fine que la vitesse de rotation est élevée, mais elle dépend aussi de la concentration de soluté et du solvant.


== Oxydes technologiques ==
== Oxydes technologiques ==

Les oxydes technologiques sont composés majoritairement d'[[Élément chimique|éléments]] [[métal]]liques et d'[[oxygène]], comme l'[[alumine]] {{fchim|Al|2|O|3}}, l'[[oxyde de fer(III)]] {{fchim|Fe|2|O|3}}, les [[Groupe du spinelle|spinelles]] {{fchim|MgAl|2|O|4}} et {{fchim|CoFe|2|O|4}}, le [[titanate de baryum]] {{fchim|BaTiO|3}}, le [[dioxyde de titane]] {{fchim|TiO|2}}{{etc}}
Les oxydes technologiques sont composés majoritairement d'[[Élément chimique|éléments]] [[métal]]liques et d'[[oxygène]], comme l'[[alumine]] {{fchim|Al|2|O|3}}, l'[[oxyde de fer(III)]] {{fchim|Fe|2|O|3}}, les [[Groupe du spinelle|spinelles]] {{fchim|MgAl|2|O|4}} et {{fchim|CoFe|2|O|4}}, le [[titanate de baryum]] {{fchim|BaTiO|3}}, le [[dioxyde de titane]] {{fchim|TiO|2}}{{etc}}


=== Oxydes à propriétés magnétiques ===
=== À propriétés magnétiques ===
[[Fichier:Spinel structure.png|redresse=1.35|vignette|[[Structure cristalline]] du [[Groupe du spinelle|spinelle]] {{fchim|MgAl|2|O|4}}, vue le long de la direction [110]. Les [[atome]]s de [[magnésium]] sont représentés en jaune, ceux d'[[aluminium]] en gris et ceux d'[[oxygène]] en rouge. Les bords noirs représentent la [[Maille (cristallographie)|maille élémentaire]]<ref name="10.1016/0025-5408(95)00010-0">{{Article|langue=en|nom1=H. Sawada|titre=An electron density residual study of magnesium aluminum oxide spinel|périodique=Materials Research Bulletin|volume=30|numéro=3|mois=mars|année=1995|pages=341-345|url texte=https://www.sciencedirect.com/science/article/pii/0025540895000100|consulté le=20 août 2020|doi=10.1016/0025-5408(95)00010-0}}</ref>.]]


Ce sont des oxydes technologiques présentant des propriétés [[Magnétisme|magnétiques]] ou [[Ferromagnétisme|ferromagnétiques]]. La première céramique magnétique à avoir été découverte est l'[[oxyde de fer(II,III)]] {{fchim|Fe|3|O|4}}, ou [[magnétite]].
Ce sont des oxydes technologiques présentant des propriétés [[Magnétisme|magnétiques]] ou [[Ferromagnétisme|ferromagnétiques]]. La première céramique magnétique à avoir été découverte est l'[[oxyde de fer(II,III)]] {{fchim|Fe|3|O|4}}, ou [[magnétite]].


La structure la plus commune des oxydes technologiques à propriétés magnétiques est la structure ''[[spinelle]]'' où les [[anion]]s forment un [[empilement compact]] de géométrie [[cubique à faces centrées]] ou [[hexagonal compact]] et les [[cation]]s se placent dans les [[Lacune (cristallographie)|lacunes]] [[Géométrie moléculaire tétraédrique|tétraédriques]] ou [[Géométrie moléculaire octaédrique|octaédriques]] selon leur taille. Elle est de la forme {{rouge|''A''}}{{vert|(''B''){{ind|2}}}}O{{ind|4}} avec en rouge les métaux occupant les sites tétraédriques et en vert ceux octaédriques.
==== Structure ====

[[Fichier:Spinel structure.png|redresse=1.35|vignette|[[Structure cristalline]] du [[Groupe du spinelle|spinelle]] {{fchim|MgAl|2|O|4}}, vue le long de la direction [110]. Les [[atome]]s de [[magnésium]] sont représentés en jaune, ceux d'[[aluminium]] en gris et ceux d'[[oxygène]] en rouge. Les bords noirs représentent la [[Maille (cristallographie)|maille élémentaire]]<ref name="10.1016/0025-5408(95)00010-0">
{{Article
| langue = en
| nom1 = H. Sawada
| titre = An electron density residual study of magnesium aluminum oxide spinel
| périodique = Materials Research Bulletin
| volume = 30
| numéro = 3
| jour =
| mois = mars
| année = 1995
| pages = 341-345
| url texte = https://www.sciencedirect.com/science/article/pii/0025540895000100
| consulté le = 20 août 2020
| doi = 10.1016/0025-5408(95)00010-0
| pmid =
| bibcode =
}}</ref>.]]

La structure la plus commune des oxydes technologiques à propriétés magnétiques est la structure ''[[spinelle]]'' où les anions forment un empilement compact de géométrie [[cubique à faces centrées]] ou [[hexagonal compact]] et les cations se placent dans les lacunes [[tétraédrique]]s ou [[octaédrique]]s selon leur taille. Elle est de la forme {{rouge|A}}{{vert|(B)<sub>2</sub>}}O<sub>4</sub> avec en rouge les métaux occupant les sites tétraédriques et en vert ceux octaédriques.
Il existe deux types de structures spinelles :
Il existe deux types de structures spinelles :
*Spinelle directe : {{rouge|A<sup>2+</sup>}}{{vert|(B<sup>3+</sup>)<sub>2</sub>}}O<sub>4</sub>. Exemple : MgAl<sub>2</sub>O<sub>4</sub>, {{rouge|Mg<sup>2+</sup>}}{{vert|(Al<sup>3+</sup>)<sub>2</sub>}}O<sub>4</sub>
* Spinelle directe : {{rouge|''A''{{exp|2+}}}}{{vert|(''B''{{exp|3+}}){{ind|2}}}}O{{ind|4}}. Exemple : {{fchim|MgAl|2|O|4}}, {{rouge|Mg{{exp|2+}}}}{{vert|(Al{{exp|3+}}){{ind|2}}}}O{{ind|4}}.
*Spinelle inverse : {{rouge|A<sup>3+</sup>}}{{vert|(B<sup>2+</sup>A<sup>3+</sup>)}}O<sub>4</sub>. Exemple : CoFe<sub>2</sub>O<sub>4</sub>, {{rouge|Fe<sup>3+</sup>}}{{vert|(Co<sup>2+</sup>Fe<sup>3+</sup>)}}O<sub>4</sub>
* Spinelle inverse : {{rouge|''A''{{exp|3+}}}}{{vert|(''B''{{exp|2+}}''A''{{exp|3+}})}}O{{ind|4}}. Exemple : {{fchim|CoFe|2|O|4}}, {{rouge|Fe{{exp|3+}}}}{{vert|(Co{{exp|2+}}Fe{{exp|3+}})}}O{{ind|4}}.


[[Fichier:Superéchange.JPG|redresse=1.35|vignette|Schéma simplifié du couplage [[Antiferromagnétisme|antiferromagnétique]] des [[cation]]s des sites tétraédriques et octaèdriques ''via'' l'oxygène.]]
==== Origine des propriétés magnétiques ====


Le [[magnétisme]] de ces matériaux a pour origine le [[moment magnétique]] porté par les [[atome]]s, qui a deux composantes : le [[moment magnétique de spin]] et le [[moment cinétique orbital]].
[[Fichier:Superéchange.JPG|vignette|300px|Schéma simplifié du couplage antiferromagnétique des cations des sites tétraédriques et octaèdriques via l'oxygène.]]
Le magnétisme de ces matériaux a pour origine le [[moment magnétique]] porté par les atomes qui a deux composantes : le [[moment magnétique de spin]] et le [[moment magnétique orbital]].


Chaque cation métallique porte un moment magnétique dû au [[spin]] de ses [[électron de valence|électrons de valence]]. Par exemple le Fe{{exp|3+}} est un métal de type d{{exp|5}} et à haut spin, ce qui fait que son moment magnétique vaut, approximativement,<sub>B</sub> (où µ<sub>B</sub> est le [[magnéton de Bohr]]). Or à cet effet s'ajoute l'effet du [[superéchange]] qui résulte du couplage [[Antiferromagnétisme|antiferromagnétique]] induit par l'oxygène entre les cations dans les lacunes tétraédriques et ceux dans les lacunes octaédriques. Ce couplage est antiferromagnétique parce que l'oxygène implique que les spins de ces deux types de cations soient opposés. Mais la valeur absolue des deux moments magnétiques cationiques n'étant pas identique, le moment magnétique résultant n'est pas nul, par conséquent le matériau est magnétique.
Chaque cation métallique porte un moment magnétique dû au [[spin]] de ses [[Électron de valence|électrons de valence]]. Par exemple, le fer ferrique Fe{{exp|3+}} est un métal de type d{{exp|5}} et à [[Haut spin et bas spin|haut spin]], ce qui fait que son moment magnétique vaut de l'ordre de{{ind|B}}, où µ{{ind|B}} est le [[magnéton de Bohr]]. Or à cet effet s'ajoute l'effet du [[superéchange]] qui résulte du couplage [[Antiferromagnétisme|antiferromagnétique]] induit par l'oxygène entre les cations dans les lacunes tétraédriques et ceux dans les lacunes octaédriques. Ce couplage est antiferromagnétique parce que l'oxygène implique que les spins de ces deux types de cations soient opposés. Mais la [[valeur absolue]] des deux moments magnétiques cationiques n'étant pas identique, le moment magnétique résultant n'est pas nul, par conséquent le matériau est magnétique.
Exemple de la [[magnétite]] : Fe<sub>3</sub>O<sub>4</sub>. Sa structure est de type spinelle inverse : {{rouge|Fe<sup>3+</sup>}}{{vert|(Fe<sup>2+</sup>Fe<sup>3+</sup>)}}O<sub>4</sub>. Le moment magnétique de Fe{{exp|3+}} vaut 5µ<sub>B</sub>, de même le moment magnétique de Fe{{exp|2+}} vaut 4µ<sub>B</sub>. À cause du superéchange le moment magnétique total vaut : <math>5\mu_B+4\mu_B-5\mu_B=4\mu_B</math> car les moments magnétiques des deux types de cations sont opposés.


Dans le cas de la [[magnétite]] {{fchim|Fe|3|O|4}}, la structure est de type spinelle inverse {{rouge|Fe{{exp|3+}}}}{{vert|(Fe{{exp|2+}}Fe{{exp|3+}})}}O{{ind|4}}. Le moment magnétique du fer ferrique Fe{{exp|3+}} vaut 5µ{{ind|B}}, tandis que celui du fer ferreux Fe{{exp|2+}} vaut 4µ{{ind|B}}. En raison du superéchange, le moment magnétique total vaut {{nobr|(5 + 4 – 5) µ{{ind|B}} {{=}} 4 µ{{ind|B}}}}, car les moments magnétiques des deux types de cations sont opposés.
==== Applications ====


Les applications des oxydes technologiques à propriétés magnétiques dépendent en particulier de leur mise en forme, comme l'[[enregistrement magnétique]] ([[Bande magnétique|bandes magnétiques]]) ou le [[stockage d'information]] ([[Disque dur|disques durs]], [[Disque compact|CD]]).
{{à compléter}}


=== À propriétés piézoélectriques ===
Les applications des oxydes technologiques à propriétés magnétiques dépend en particulier de leur mise en forme.
[[Fichier:BaTiO3.PNG|vignette|300px|Exemple de [[Pérovskite (structure)|structure pérovskite]] [[Système cristallin cubique|cubique]] : le [[titanate de baryum]] {{fchim|BaTiO|3}} à haute température<ref>[[Inorganic crystal structure database|ICSD]] No. 43125 ; {{Doi|10.1006/jssc.1996.0183|Gotor F.J., Real C., Dianez M.J. & Criado J.M. ''Journal of Solid State Chemistry'' (1996) 123, 301–305}}</ref>.]]
* Couches minces : enregistrement magnétique (bandes magnétiques...)
* Films minces : stockage information (disque durs, CD...)


Les oxydes technologiques présentant des propriétés [[Piézoélectricité|piézoélectriques]] ont la caractéristique de se [[Polarisation (diélectrique)|polariser électriquement]] sous l’action d’une [[Contrainte (mécanique)|contrainte mécanique]], et réciproquement de se [[Déformation d'un matériau|déformer]] lorsqu’on leur applique un [[champ électrique]]. On parle d'effet direct et d'effet inverse, les deux étant indissociables : l'effet piézoélectrique direct induit une tension électrique sous l'effet d'une action mécanique, tandis que l'effet piézoélectrique inverse induit une action mécanique sous l'effet d'une tension électrique. Un cristal piézoélectrique est [[Ferroélectricité|ferroélectrique]] s'il garde sa polarisation électrique après application d'un champ électrique. Très peu de matériaux sont ferroélectriques. Sans déformation, la structure pérovskite ne possède pas de [[moment dipolaire électrique]] car les anions et les cations sont disposés de manière symétrique, les cations étant au centre de leurs sites ; lorsque le réseau est déformé, par pression mécanique par exemple, les cations des lacunes octaèdriques sont décentrés, ce qui induit un moment dipolaire et donc une [[tension électrique]].
=== Oxydes à propriétés piézoélectriques ===


La structure la plus commune des oxydes technologiques à propriétés piézoélectriques est un [[réseau cristallin]] [[Système cristallin orthorhombique|orthorhombique]] formé par des [[Géométrie moléculaire octaédrique|octaèdres]] d'[[anion]]s à l'intérieur desquels est emprisonné un [[cation]] relativement petit ; huit de ces octaèdres forment un [[Système cristallin cubique|cube]] possédant une [[Lacune (cristallographie)|lacune]] au centre de laquelle est emprisonné un autre cation relativement grand. Ce type de structure est appelé ''[[Pérovskite (structure)|pérovskite]]''. Un exemple en est le [[titanate de baryum]] {{fchim|BaTiO|3}}, dont la [[structure cristalline]] est illustrée ci-contre. Dans cette illustration d'une pérovskite à haute température, la taille des ions n'est pas respectées afin de pourvoir visualiser clairement le [[polyèdre de coordination]] du titane. Le rayon de l'anion oxygène O{{exp|2−}} est en réalité le plus grand.
Les oxydes technologiques présentant des propriétés [[Piézoélectricité|piézoélectriques]], ont la caractéristique de se polariser électriquement sous l’action d’une contrainte mécanique et réciproquement de se déformer lorsqu’on leur applique un champ électrique. Il y a l'effet direct et l'effet indirect, les deux sont indissociables.
* Effet piézoélectrique direct : une action mécanique induit une tension électrique.
* Effet piézoélectrique inverse : une tension électrique induit une action mécanique.
Un cristal piézoélectrique est [[ferroélectricité|ferroélectrique]] s'il garde sa polarisation électrique après application d'un champ électrique. Très peu de matériaux sont ferroélectriques.


Les oxydes technologiques piézoélectriques sont utilisés dans des [[capteur]]s (de [[pression]], de [[température]], [[microphone]]s, [[Microbalance piézoélectrique|microbalances]]{{etc.}}) dans des [[actionneur]]s ou [[moteur]]s ([[microscope à force atomique]], [[microscope à effet tunnel]], [[optique adaptative]] en astronomie, [[autofocus]] des [[Appareil photographique|appareils photographiques]], têtes d'écriture des [[Imprimante à jet d'encre|imprimantes à jet d'encre]]{{etc.}}).
==== Structure ====

[[Fichier:BaTiO3.PNG|vignette|300px|Exemple de structure pérovskite cubique : BaTiO{{ind|3}} à haute température<ref>[[Inorganic crystal structure database|ICSD]] No. 43125 ; {{Doi|10.1006/jssc.1996.0183|Gotor F.J., Real C., Dianez M.J. & Criado J.M. ''Journal of Solid State Chemistry'' (1996) 123, 301–305}}</ref>.]]

La structure la plus commune des oxydes technologiques à propriétés piézoélectriques est un réseau cristallin [[orthorhombique]] formé par des octaèdres d'anions à l'intérieur desquels est emprisonné un cation relativement petit ; 8 de ces octaèdres forment un cube possédant une lacune au centre de laquelle est emprisonné un autre cation relativement grand. Ce type de structure s'appelle : ''[[Pérovskite (structure)|pérovskite]]''. Un exemple est {{formule chimique|BaTiO|3}} dont la structure cristalline est illustrée ci-contre.

La figure proposée est une représentation schématique de la structure de {{formule chimique|BaTiO|3}} à haute température. La taille des ions n'est donc pas respectées afin de pourvoir visualiser clairement le polyèdre de coordination du Titane. Le rayon de l'anion (oxygène sous la forme O{{exp|2-}}) est en réalité le plus grand.

==== Origine des propriétés piézoélectriques ====

Sans déformation, la structure pérovskite ne possède pas de moment électrique car les anions et les cations sont disposés de manière symétrique, les cations sont au centre de leurs sites. Lorsque le réseau est déformé, par pression mécanique par exemple, les cations des lacunes octaèdriques sont décentrés, ce qui induit un moment électrique et donc une tension.

==== Applications ====

Les oxydes technologiques piézoélectriques sont utilisés dans des [[capteur]]s (de [[pression]], de [[température]], [[microphone]]s, [[microbalance]]s...) dans des [[actionneur]]s ou [[moteur]]s ([[microscopie à force atomique]], [[microscope à effet tunnel|microscopie à effet tunnel]], [[optique adaptative]] en astronomie, [[autofocus]] dans les appareils photographiques, têtes d'écriture des [[imprimante à jet d'encre|imprimantes à jet d'encre]]...).


Les oxydes technologiques ferroélectriques sont utilisés pour le stockage de l'information.
Les oxydes technologiques ferroélectriques sont utilisés pour le stockage de l'information.


=== Oxydes à propriétés électriques ===
=== À propriétés électriques ===
Les oxydes technologiques [[diélectrique]]s sont utilisés comme [[Isolant électrique|isolants électriques]], par exemple comme [[isolateur]]s de [[Ligne à haute tension|lignes à haute tension]].

{{à compléter}}

Les oxydes technologiques [[diélectricité|diélectriques]] servant comme isolants électriques par exemple.

=== Oxydes à propriétés optiques ===

{{à compléter}}

Deux grands types : photocatalyseurs ({{ex}} {{formule chimique|TiO|2}}) et cristaux photoniques.

==== Structure ====

==== Origine des propriétés optiques ====


==== Applications ====
=== À propriétés optiques ===
Les [[photocatalyse]]urs, par exemple, sont utilisés pour la [[catalyse]] en [[dépollution]], comme le [[dioxyde de titane]] {{fchim|TiO|2}}, qui peut ainsi être déposée sur les bâtiments vitrés pour en prévenir les salissures grâce à ses propriétés [[oxydant]]es, ou sur un [[Miroir (optique)|miroir]] pour éviter la formation de [[buée]] car il a un très bon [[Mouillage (physique)|mouillage]] avec l'[[eau]].


Les [[Cristal photonique|cristaux photoniques]] permettent par exemple de réaliser des [[Couleur structurelle|colorations structurelles]], des composants d'[[optique intégrée]] (utilisant par exemple du [[niobate de lithium]] {{fchim|LiNbO|3}}) ou des [[Fibre à cristal photonique|fibres à cristaux photoniques]], par exemple en [[verre de quartz]] ([[dioxyde de silicium]] {{fchim|SiO|2}}).
* Photocatalyseurs : utilisés pour la catalyse en dépollution. Par exemple une couche de {{formule chimique|TiO|2}} peut être déposée sur les bâtiments vitrés pour éviter la salissure car il est très oxydant, ou sur un miroir pour éviter l'effet de buée car il a un très bon mouillage par l'eau.
* Cristaux photoniques : ils permettent de créer un gradient d'indice de réfraction.


== Méthodes de caractérisation ==
== Méthodes de caractérisation ==
Les méthodes de [[Caractérisation d'un matériau|caractérisation]] des céramiques, de la [[poudre]] initiale au produit [[Frittage|fritté]], sont nombreuses : techniques d'analyse de surface ([[Diffractométrie de rayons X|RX]], [[Microscopie électronique à balayage|MEB]], [[Microscopie électronique en transmission|MET]], [[Microscopie à force atomique|MFA]]{{etc.}}), mesure de la [[granulométrie]], de la [[surface spécifique]], de la [[densité]] ([[masse volumique]]), de la [[porosité]], de la [[Résistance des matériaux|résistance mécanique]], des paramètres [[Rhéologie|rhéologiques]] et du comportement thermique.


* '''[[Diffractométrie de rayons X]]''' — C'est une technique d'analyse fondée sur la diffraction des rayons X sur la matière. Elle permet, dans le cas des céramiques, de savoir si on a obtenu la phase désirée et si la réaction a bien eu lieu.
{{à compléter}}


* '''[[Microscopie électronique à balayage]]''' — La MEB est une technique de [[microscopie électronique]] fondée sur le principe des interactions électrons-matière. Elle permet, dans le cas des céramiques, de connaître la morphologie de la surface et de savoir si le frittage a eu lieu. Elle permet de voir par ailleurs que le frittage n'est jamais complet et qu'il reste toujours des microfissures appelées ''porosité résiduelle'' entre les plaques consolidées, ce qui rend les objets faits par voie céramique conventionnelle, cassants.
Les méthodes de caractérisation des céramiques, de la poudre initiale au produit fritté, sont nombreuses : les techniques d'analyse de surface (RX, MEB, MET, MFA...), la mesure de la [[granulométrie]], la [[surface spécifique]], la [[densité]], la [[porosité]], la [[Résistance des matériaux|résistance mécanique]], les mesures [[Rhéologie|rhéologiques]] et les analyses thermiques.


* '''[[Microscopie électronique en transmission]]''' — La MET est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince, elle est donc particulièrement indiquée pour l'analyse des céramiques en couches très minces issues de l'ablation laser par exemple.
=== Diffraction des rayons X ===


* '''[[Microscopie à force atomique]]''' — La MFA est une technique de microscopie à champ proche, une sonde scanne la surface et est attirée ou repoussée selon la charge de la surface. Elle est donc particulièrement appropriée pour analyser les couches minces des oxydes à propriétés magnétiques.
{{article détaillé|Diffractométrie de rayons X}}


== Applications ==
C'est une technique d'analyse basée sur la diffraction des rayons X sur la matière. Elle permet, dans le cas des céramiques, de savoir si on a obtenu la phase désirée et si la réaction a bien eu lieu.
Les céramiques techniques tendent à remplacer les [[Métal|métaux]] dans un nombre croissant d'applications. Leur faiblesse majeure réside dans leur [[fragilité]], liée à leur [[Raideur (mécanique)|raideur]], là où les métaux présentent une bonne résistance à la [[Rupture (matériau)|rupture]] en raison de leur [[ductilité]]. Elles tendent en revanche à réduire les [[Contrainte (mécanique)|contraintes]] locales accumulées sous l'effet de [[Déformation élastique|déformations élastiques]] et [[Déformation plastique|plastiques]]. Le développement de [[Matériau composite|matériaux composites]] à [[Fibre de céramique|fibres de céramiques]] a permis de réaliser des progrès significatifs en ce domaine et d'élargir sensiblement la gamme des applications des céramiques techniques.


On trouve des céramiques dans les [[Roulement mécanique|roulements mécaniques]] et les [[Joint (étanchéité)|joints d'étanchéité]], comme des [[Coque (mécanique)|coques]] de [[Palier (mécanique)|paliers]] pour les [[Turbine à gaz|turbines à gaz]] fonctionnant à plusieurs milliers de tours par minute et plus de {{tmp|1500|°C}}. Des [[Garniture mécanique|garnitures mécaniques]] en céramique scellent les ouvertures permettant à des [[Arbre (mécanique)|arbres]] à travers les [[pompe]]s pour les protéger des agents corrosifs et abrasifs de l'environnement extérieur. C'est par exemple le cas dans les systèmes de [[désulfuration]] des fumées industrielles, où les [[Palier lisse|paliers lisses]] en céramique des pompes sont exposés à du [[lait de chaux]] [[Base (chimie)|basique]] très concentré fortement chargé en sable. On retrouve des conditions semblables dans les systèmes de pompage pour le [[dessalement]] de l'[[eau de mer]], dans lesquels des paliers lisses en céramique peuvent traiter de l'eau salée chargée de sable pendant plusieurs années sans être altérés par l'abrasion ni la corrosion.
=== Microscopie électronique à balayage (MEB) ===


La plupart des matériaux céramiques sont des [[Isolant électrique|isolants électriques]], mais certains sont [[supraconducteur]]s, [[semiconducteur]]s ou sont utilisés comme [[Élément chauffant|éléments chauffants]]. Les céramiques semiconductrices sont utilisées pour les [[varistance]]s ([[oxyde de zinc]] ZnO), les [[Sonde de température|sondes thermiques]], les [[Démarreur (électricité)|démarreurs]], la [[démagnétisation]], les [[Fusible réarmable PTC|fusibles réarmables PTC]].
{{article détaillé|Microscopie électronique à balayage}}


Les céramiques sont généralement connues comme isolants, comme dans les [[Bougie d'allumage|bougies d'allumage]] et les [[isolateur]]s pour [[Ligne à haute tension|lignes à haute tension]]). Elles supportent des températures de {{tmp|600|°C}}, par exemple dans le cas des bougies d'allumage ou des dispositifs d'allumage pour [[brûleur]]s à gaz. L'[[alumine]] {{fchim|Al|2|O|3}} des bougies d'allumage a une [[résistivité]] de {{unité|108|Ω||cm}} à {{tmp|600|°C}}. Les applications à chaud sont parmi les plus importantes des céramiques, notamment dans les [[Poêle (chauffage)|poêles]], les brûleurs et les éléments chauffants. Les [[Céramique ultraréfractaire|céramiques ultraréfractaires]] peuvent fonctionner jusqu'à {{tmp|2500|°C}} sans [[Déformation d'un matériau|déformation]] ni [[Fatigue (matériau)|fatigue]]. La faible [[conductivité thermique]] et la très grande [[thermostabilité]] de ces matériaux, comme le [[diborure de zirconium]] {{fchim|ZrB|2}} et le [[diborure d'hafnium]] {{fchim|HfB|2}}, font qu'ils sont utilisés comme [[Isolant thermique|isolants thermiques]] ou [[Matériau réfractaire|matériaux réfractaires]], par exemple pour les [[tuile]]s des [[Bouclier thermique|boucliers thermiques]] destinés à protéger les [[Véhicule spatial|véhicules spatiaux]] et les [[Missile balistique|missiles balistiques]] lors de leur [[rentrée atmosphérique]], ou encore sur les [[Bord d'attaque|bords d'attaque]] des [[aéronef]]s et des [[Composante aérienne militaire|armes]] en {{Lien|langue=en|trad=Hypersonic flight|fr=vol hypersonique}}, voire pour recouvrir la structure métallique des [[Aube (mécanique)|aubes]] de [[turbine]]s.
C'est une technique de microscopie électronique basée sur le principe des interactions électrons-matière. Elle permet, dans le cas des céramiques, de connaître la morphologie de la surface et de savoir si le frittage a eu lieu. Elle permet de voir par ailleurs que le frittage n'est jamais complet et qu'il reste toujours des microfissures appelées ''porosité résiduelle'' entre les plaques consolidées, ce qui rend les objets faits par voie céramique conventionnelle, cassants.


Avec les recherches sur les [[Moteur à combustion interne|moteurs à combustion interne]] fonctionnant à des températures de plus en plus élevées, la demande en [[Aube (mécanique)|aubes]] de [[turbocompresseur]]s, pièces de moteurs et [[Palier (mécanique)|paliers]] en matériaux céramiques augmente significativement. Dès les [[années 1980]], [[Toyota (entreprise)|Toyota]] avait développé un moteur en céramique pouvant fonctionner à des températures élevées sans refroidissement, d'où un important gain de rendement et de poids par rapport aux moteurs à combustion interne classiques ; livré dans certaines motorisations de la {{7e|génération}} S120 de la [[Toyota Crown]], il ne fut pas produit en grande série du fait de nombreuses difficultés industrielles, notamment du haut degré de pureté nécessaire.
=== Microscopie électronique en transmission (MET) ===


L'utilisation des céramiques la plus importante en volume est sous forme de {{Lien|langue=en|trad=Ceramic capacitor|fr=Condensateur céramique|texte=condensateurs céramiques}}. En raison de leur [[rigidité diélectrique]] élevée, les {{Lien|langue=de|trad=Leistungskondensator|fr=Condensateur de puissance|texte=condensateurs de puissance}} en céramique sont essentiels aux [[Émetteur d'ondes radioélectriques|émetteurs d'ondes radioélectriques]]. Les propriétés optiques de certaines céramiques permettent leur utilisation dans les lampes à vapeur métallique ([[Lampe à vapeur de sodium|lampe à sodium]], [[Lampe à vapeur de mercure|lampes à mercure]]), dans des [[Diode laser|diodes laser]], ainsi que dans des [[Détecteur infrarouge|détecteurs infrarouge]]. Leur inertie chimique et leur [[biocompatibilité]] en font des candidats valables pour les [[Prothèse totale de hanche|prothèses de la hanche]] et les [[Prothèse dentaire|prothèses dentaires]]. Les propriétés des céramiques peuvent également être utilisées pour réduire les frottements entre pièces mécaniques ([[Roulement mécanique|roulements à billes]] céramiques par exemple) ou encore détecter des gaz, de l'humidité, agir comme catalyseur ou réaliser des électrodes. Des poudres céramiques à base de [[nitrure de titane]] TiN, par exemple, peuvent être utilisées comme [[lubrifiant solide]].
{{article détaillé|Microscopie électronique en transmission}}


== Exemples de céramiques techniques ==
C'est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince, elle est donc particulièrement indiquée pour l'analyse des céramiques en couches très minces issues de l'ablation laser par exemple.
=== Oxydes ===
{| class="wikitable" style="text-align:left"
|-
! style="width:8em;" | [[Matériau]]
! style="width:11em;" | [[Formule chimique]]
! style="width:22em;" | Propriétés notables
! style="width:22em;" | Exemples d'applications
|-
| style="vertical-align:top" | [[Alumine]]
| style="vertical-align:top;text-align:center" | {{fchim|Al|2|O|3}}
| style="vertical-align:top" | Bonne tenue mécanique aux températures élevées, bonne [[conductivité thermique]], grande résistivité électrique, grande [[dureté (minéral)|dureté]], bonne résistance à l'usure, inertie chimique.
| style="vertical-align:top" | [[Isolateur]]s électriques, supports d'éléments chauffants, protections thermiques, éléments de broyage, composants mécaniques, bagues d'[[étanchéité]], prothèses dentaires.
|-
| style="vertical-align:top" | [[Sialon]]
| style="vertical-align:top;text-align:center" | {{fchim|Si|12–''m''–''n''|Al|''m''+''n''|O|''n''|N|16–''n''}}<br>{{fchim|Si|6–''n''|Al|''n''|O|''n''|N|8–''n''}}<br>{{fchim|Si|2–''n''|Al|''n''|O|1+''n''|N|2–''n''}}
| style="vertical-align:top" | [[Solution solide]] de [[nitrure de silicium]] {{fchim|Si|3|N|4}}, de [[nitrure d'aluminium]] AlN et d'[[Alumine|oxyde d'aluminium]] {{fchim|Al|2|O|3}}.
| style="vertical-align:top" |
|-
| style="vertical-align:top" | [[Cordiérite]] (silicate alumineux ferro-magnésien)
| style="vertical-align:top;text-align:center" | {{fchim|Mg|2|Al|3|AlSi|5|O|18}}
| style="vertical-align:top" | Bonne résistance aux chocs thermiques, bonne conductivité thermique.
| style="vertical-align:top" | Isolants électriques, échangeurs thermiques, éléments chauffants
|-
| style="vertical-align:top" | [[Mullite]]
| style="vertical-align:top;text-align:center" | {{fchim|3Al|2|O|3|·2SiO|2}} ou {{fchim|2Al|2|O|3|·SiO|2}}
| style="vertical-align:top" | Bonne résistance aux chocs thermiques, conductivité thermique faible, résistivité électrique importante.
| style="vertical-align:top" | Produits réfractaires.
|-
| style="vertical-align:top" | [[Dioxyde de zirconium]]
| style="vertical-align:top;text-align:center" | {{fchim|ZrO|2}}
| style="vertical-align:top" | Excellentes propriétés mécaniques aux températures élevées, conductivité thermique faible à température ambiante, conducteur électrique à T > {{température|1000|°C}}, grande dureté, bonne résistance à l'usure, bonne inertie chimique, bonne résistance aux attaques des métaux. Il existe deux types : zircone non stabilisée, utilisée en tant qu'additif, matériau de revêtement, poudre abrasive... et zircone stabilisée à l'[[yttrium]] ({{formule chimique|ZrO|2}}/{{formule chimique|Y|2|O|3}} = TZP) ou à la [[oxyde de magnésium|magnésie]] ({{formule chimique|ZrO|2}}/[[magnésium|MgO]] = PSZ).
| style="vertical-align:top" | Creusets, buses de coulée, éléments chauffants, revêtement anti-thermique, conducteurs ioniques, prothèses dentaires.
|-
| style="vertical-align:top" | [[Oxyde de zinc]]
| style="vertical-align:top;text-align:center" | ZnO
| style="vertical-align:top" |
| style="vertical-align:top" | Utilisé dans les diodes pour ses propriétés électriques. Voir [[Varistance]].
|-
| style="vertical-align:top" | [[Oxyde de fer(II,III)]]
| style="vertical-align:top;text-align:center" | {{fchim|Fe|3|O|4}}
| style="vertical-align:top" |
| style="vertical-align:top" | Utilisé dans les [[transformateur]]s et le stockage magnétique des données.
|-
| style="vertical-align:top" | [[Pérovskite (structure)|Pérovskites]]
| style="vertical-align:top;text-align:center" | {{fchim|(''A'')(''B'')O|3}}
| style="vertical-align:top" | Elles constituent une vaste famille de matériaux cristallins comprenant par exemple le [[titanate de baryum]] {{fchim|BaTiO|3}}, le [[titanate de calcium]] {{fchim|CaTiO|3}} ([[pérovskite]]), le [[titanate de strontium]] {{fchim|SrTiO|3}}, le {{fchim|(PbSr)TiO|3}} ou le {{fchim|Pb(Zr|0,5|Ti|0,5|)O|3}}.
| style="vertical-align:top" | [[Diélectrique]]s pour la fabrication de [[Condensateur (électricité)|condensateurs]] multicouches, [[thermistance]]s, [[transducteur]]s [[piézoélectricité|piézoélectriques]]...
|-
| style="vertical-align:top" | [[Orthosilicate de magnésium]]
| style="vertical-align:top;text-align:center" | {{fchim|Mg|2|SiO|4}}
| style="vertical-align:top" | Bonne résistivité électrique.
| style="vertical-align:top" | Isolants électriques.
|-
| style="vertical-align:top" | [[Oxyde de magnésium]]
| style="vertical-align:top;text-align:center" | MgO
| style="vertical-align:top" | Résistance aux métaux fondus, bonne résistance mécanique.
| style="vertical-align:top" | Traitement des matériaux [[piézoélectricité|piézoélectriques]], réfractaires, composants optiques.
|-
| style="vertical-align:top" | [[Dioxyde d'uranium]]
| style="vertical-align:top;text-align:center" | {{fchim|UO|2}}
| style="vertical-align:top" |
| style="vertical-align:top" | Combustible dans les réacteurs nucléaires.
|}


=== Non-oxydes ===
=== Microscopie à force atomique (MFA) ===
{| class="wikitable" style="text-align:left"

|-
{{article détaillé|Microscopie à force atomique}}
! style="width:8em;" | [[Matériau]]

! style="width:11em;" | [[Formule chimique]]
C'est une technique de microscopie à champ proche, une sonde scanne la surface et est attirée ou repoussée selon la charge de la surface. Elle est donc particulièrement appropriée pour analyser les couches minces des oxydes à propriétés magnétiques.
! style="width:22em;" | Propriétés notables

! style="width:22em;" | Exemples d'applications
== Utilisations ==
|-

| style="vertical-align:top" | [[Nitrure de silicium]]
{| class="wikitable"
| style="vertical-align:top;text-align:center" | {{formule chimique|Si|3|N|4}}
|+ Part de marché mondial en 1992<ref>{{article
| style="vertical-align:top" | Grande dureté, bonne résistance à l'usure et à l'abrasion, bonne inertie chimique, bonne résistance aux chocs thermiques. Il existe deux types de nitrure de silicium : lié par nitruration de poudre de silicium comprimée ou par pressage de la poudre de nitrure de silicium à température élevée ([[frittage]]).
| langue = fr
| style="vertical-align:top" | Poudres abrasives, outils de coupe, réfractaire pour la sidérurgie, billes de roulement, bagues d'étanchéité pour le moulage des métaux, soupapes (automobile).
| prénom1 = Marc
| nom1 = Abouaf
| titre = Développements récents et tendances dans les applications mécaniques des céramiques
| périodique = Mines, revue des ingénieurs
| numéro = 357
| mois = juillet
| année = 1995
| pages = 40
| issn = 0150-7516
| éditeur = Intermines }}</ref>
! Propriété fonctionnelle !! Valeur (MF)
|-
|-
| style="vertical-align:top" | [[Carbure de bore]]
| Diélectrique || {{formatnum:38000}}
| style="vertical-align:top;text-align:center" | {{fchim|B|4|C}}
| style="vertical-align:top" |
| style="vertical-align:top" | [[Blindage (mécanique)|Blindage]] des [[char d'assaut|tanks]] et des [[hélicoptère]]s.
|-
|-
| style="vertical-align:top" | [[Carbure de silicium]]
| Mécanique || {{formatnum:6000}}
| style="vertical-align:top;text-align:center" | SiC
| style="vertical-align:top" | Grande dureté, bonne résistance aux chocs thermiques, grande conductivité thermique, faible dilatation thermique, excellente inertie chimique.
| style="vertical-align:top" | Réfractaires, résistances chauffantes, outils de coupe, pièces de [[frottement]], joints d'étanchéité des pompes à eau, support de [[catalyseur]].
|-
|-
| style="vertical-align:top" | [[Nitrure d'aluminium]]
| Thermique || 800
| style="vertical-align:top;text-align:center" | AlN
| style="vertical-align:top" | Conductivité thermique élevée, bonne résistance électrique, transparent aux longueurs d'onde du visible et de l'infra-rouge.
| style="vertical-align:top" | Circuits imprimés, colonnes thermiques, fenêtres pour radar, creusets pour la fonderie.
|-
|-
| style="vertical-align:top" | [[Nitrure de bore]]
| Chimique || {{formatnum:5000}}
| style="vertical-align:top;text-align:center" | BN
| style="vertical-align:top" | Haute conductivité thermique, faible dilatation thermique, excellente résistance aux chocs thermiques, haute résistance diélectrique, faible constante diélectrique, inerte chimiquement, transparent aux micro-ondes, facilement usinable.
| style="vertical-align:top" | Isolants électriques à très hautes températures, [[creuset]]s pour la [[fonderie]], garnitures de fours, gaines de [[thermocouple]]s, supports de résistances, [[Lubrifiant solide|lubrifiant]] à haute température.
|-
|-
| style="vertical-align:top" | [[Diborure d'aluminium]]
! Total
| style="vertical-align:top;text-align:center" | {{fchim|AlB|2}}
| {{formatnum:50000}}
| style="vertical-align:top" |
| style="vertical-align:top" | Matériau de renforcement dans les [[Composite à matrice métallique|composites métalliques]].
|}
|}

Leur faible conductivité thermique font qu'elles sont utilisées comme isolants thermiques ou matériaux réfractaires, comme dans les tuiles du [[bouclier thermique]] des [[navette spatiale|navettes spatiales]] ou dans l'aviation, pour recouvrir par exemple la structure métallique des [[aube (mécanique)|aubes]] des [[turbine]]s.

Dans les années 1980, l'entreprise [[Toyota (entreprise)|Toyota]] a mis au point un moteur en céramique pouvant supporter une température supérieure à {{température|3300|°C}}. Ce type de moteur n'a pas besoin d'être refroidi, il permet un gain de rendement et de poids très important par rapport aux moteurs à combustion interne classiques. Cependant, il n'est pas produit en grande série du fait de nombreuses difficultés industrielles (notamment du fait du degré de pureté nécessaire).

Les propriétés optiques de certaines céramiques permettent leur utilisation dans les lampes à vapeur métallique, dans des lasers, ainsi que dans des détecteurs infrarouge. Leur inertie chimique et leur bio-compatibilité en font des candidats valables pour les prothèses chirurgicales et dentaires. Les propriétés des céramiques peuvent également être utilisées pour réduire les frottements entre pièces mécaniques (roulements à billes céramiques par exemple) ou encore détecter des gaz, de l'humidité, agir comme catalyseur ou réaliser des électrodes.

== Exemples de matériaux céramiques ==

Pour les applications dans les domaines du frottement et de l'[[b:Tribologie - Usure des surfaces|usure]], voir le chapitre détaillé du Wikilivre de [[b:Tribologie|tribologie]] consacré aux [[b:Tribologie - Matériaux utilisables pour le frottement|matériaux utilisables pour le frottement]].

* [[alumine]] (oxyde d'[[aluminium]] {{formule chimique|Al|2|O|3}}) : bonne tenue mécanique aux températures élevées, bonne [[conductivité thermique]], grande résistivité électrique, grande [[dureté (minéral)|dureté]], bonne résistance à l'usure, inertie chimique.
: Applications : [[isolateur]]s électriques, supports d'éléments chauffants, protections thermiques, éléments de broyage, composants mécaniques, bagues d'[[étanchéité]], prothèses dentaires.

* [[nitrure de silicium]] {{formule chimique|Si|3|N|4}} : grande dureté, bonne résistance à l'usure et à l'abrasion, bonne inertie chimique, bonne résistance aux chocs thermiques. Il existe deux types de nitrure de silicium : lié par nitruration de poudre de silicium comprimée ou par pressage de la poudre de nitrure de silicium à température élevée ([[frittage]]).
: Applications : poudres abrasives, outils de coupe, réfractaire pour la sidérurgie, billes de roulement, bagues d'étanchéité pour le moulage des métaux, soupapes (automobile).

* [[sialon]] : solution solide de nitrure de silicium, de nitrure d'aluminium et de d'oxyde d'aluminium.

* [[carbure de bore]] {{formule chimique|B|4C}}.
: Applications : [[blindage (mécanique)|blindage]] des [[char d'assaut|tanks]] et des [[hélicoptère]]s.

* [[carbure de silicium]] ou carborundum SiC : grande dureté, bonne résistance aux chocs thermiques, grande conductivité thermique, faible dilatation thermique, excellente inertie chimique.
: Applications : réfractaires, résistances chauffantes, outils de coupe, pièces de [[frottement]], joints d'étanchéité des pompes à eau, support de [[catalyseur]].

* [[cordiérite]] (silicate alumineux ferro-magnésien) : bonne résistance aux chocs thermiques, bonne conductivité thermique.
: Applications : isolants électriques, échangeurs thermiques, éléments chauffants

* mullite {{formule chimique|Al|6|Si|2|O|13}} : bonne résistance aux chocs thermiques, conductivité thermique faible, résistivité électrique importante.
: Applications : produits réfractaires.

* [[nitrure d'aluminium]] AlN : conductivité thermique élevée, bonne résistance électrique, transparent aux longueurs d'onde du visible et de l'infra-rouge.
: Applications : circuits imprimés, colonnes thermiques, fenêtres pour radar, creusets pour la fonderie.

* [[zircone]] (oxyde de [[zirconium]] {{formule chimique|ZrO|2}}) : excellentes propriétés mécaniques aux températures élevées, conductivité thermique faible à température ambiante, conducteur électrique à T > {{température|1000|°C}}, grande dureté, bonne résistance à l'usure, bonne inertie chimique, bonne résistance aux attaques des métaux. Il existe deux types : zircone non stabilisée, utilisée en tant qu'additif, matériau de revêtement, poudre abrasive... et zircone stabilisée à l'[[yttrium]] ({{formule chimique|ZrO|2}}/{{formule chimique|Y|2|O|3}} = TZP) ou à la [[oxyde de magnésium|magnésie]] ({{formule chimique|ZrO|2}}/[[magnésium|MgO]] = PSZ).
: Applications : creusets, buses de coulée, éléments chauffants, revêtement anti-thermique, conducteurs ioniques, prothèses dentaires.

* [[nitrure de bore]] NB : haute conductivité thermique, faible dilatation thermique, excellente résistance aux chocs thermiques, haute résistance diélectrique, faible constante diélectrique, inerte chimiquement, transparent aux micro-ondes, facilement usinable.
: Applications : isolants électriques à très hautes températures, [[creuset]]s pour la [[fonderie]], garnitures de fours, gaines de [[thermocouple]]s, supports de résistances, [[Lubrifiant solide|lubrifiant]] à haute température.

* borure d'aluminium {{formule chimique|AlB|2}}.
: Applications : matériau de renforcement dans les [[Composite à matrice métallique|composites métalliques]].

* [[oxyde de magnésium]] MgO : résistance aux métaux fondus, bonne résistance mécanique.
: Applications : traitement des matériaux [[piézoélectricité|piézoélectriques]], réfractaires, composants optiques.

* [[oxyde de zinc]] ZnO.
: Applications : utilisé dans les diodes pour ses propriétés électriques. Voir [[Varistance]].

* [[oxyde magnétique de fer]] {{formule chimique|Fe|3|O|4}}.
: Applications : utilisé dans les [[transformateur]]s et le stockage magnétique des données.

* [[pérovskite]]s : elles constituent une vaste famille de matériaux cristallins de formule {{formule chimique|(A)(B)O|3}} comme {{formule chimique|BaTiO|3}}, {{formule chimique|CaTiO|3}}, {{formule chimique|SrTiO|3}} ou {{formule chimique|(PbSr)TiO|3}}, {{formule chimique|Pb(Zr|0.5|Ti|0.5|)O|3}} : Applications : [[diélectrique]]s pour la fabrication de [[Condensateur (électricité)|condensateurs]] multicouches, [[thermistance]]s, [[transducteur]]s [[piézoélectricité|piézoélectriques]]...

* [[stéatite]] (silicate de magnésium ({{formule chimique|SiO|4|)Mg|2}}) : bonne résistivité électrique.
: Applications : isolants électriques.

* silicates d'aluminium ([[argile]]s).
: Applications :
:: céramiques du bâtiment : [[Brique (matériau)|brique]]s, [[tuile]]s, carreaux, éviers, bacs à douches, cuvette de WC, tuyaux...
:: céramiques des arts de la table, terre cuite, [[faïence]], grès, [[porcelaine]], assiettes, bols, plats...
:: céramiques artistiques : [[sculpture]]s, terres cuites, vases, lampes...

* [[Dioxyde d'uranium|oxyde d'uranium]] {{formule chimique|UO|2}}.
: Applications : combustible dans les réacteurs nucléaires.

* les [[verre]]s, les [[Émail (verre)|émaux]], certains types de [[ciment]]s et de liants hydrauliques, sont souvent associés aux céramiques à cause de leurs propriétés et de leurs utilisations très comparables.


== Centres de formation et de recherche ==
== Centres de formation et de recherche ==

* [[École nationale supérieure de céramique industrielle|École nationale supérieure de céramique industrielle de Limoges]]
* [[École nationale supérieure de céramique industrielle|École nationale supérieure de céramique industrielle de Limoges]]
* Lycée professionnel de la Céramique de [[Longchamp (Côte d'Or)|Longchamp]]<ref>[http://www.lyc-ceram-longchamp.fr/ Lycée professionnel de la Céramique].</ref>
* Lycée professionnel de la Céramique de [[Longchamp (Côte d'Or)|Longchamp]]<ref>[http://www.lyc-ceram-longchamp.fr/ Lycée professionnel de la Céramique].</ref>
Ligne 402 : Ligne 265 :


== Notes et références ==
== Notes et références ==

{{Références}}
{{Références}}


== Voir aussi ==
== Voir aussi ==
{{Autres projets|wikibooks=Technologie/Matériaux/Céramiques|wikibooks titre=Céramiques}}


=== Articles connexes ===
=== Articles connexes ===

* [[Composite à matrice céramique]]
* [[Composite à matrice céramique]]
* [[Céramique ultraréfractaire]]
* [[Céramique ultraréfractaire]]
Ligne 417 : Ligne 279 :


=== Bibliographie ===
=== Bibliographie ===

* {{Ouvrage|langue=en|auteur1=Roger H. Mitchell|titre=Perovskites|sous-titre=Modern and ancient|éditeur=Almaz Press|lieu=Thunder Bay|année=2002|pages totales=318|isbn=978-0-9689411-0-2|isbn10=0-9689411-0-9}}
* {{Ouvrage|langue=en|auteur1=Roger H. Mitchell|titre=Perovskites|sous-titre=Modern and ancient|éditeur=Almaz Press|lieu=Thunder Bay|année=2002|pages totales=318|isbn=978-0-9689411-0-2|isbn10=0-9689411-0-9}}


=== Liens externes ===
=== Liens externes ===
{{Autres projets|wikibooks=Technologie/Matériaux/Céramiques|wikibooks titre=Céramiques}}
* [http://ogabathuler.free.fr/Francais/Indexeceram.html Historique de la céramique, cours ENSCI]
* [http://ogabathuler.free.fr/Francais/Indexeceram.html Historique de la céramique, cours ENSCI]
*[https://ceramique-technique.com/ Le Syndicat des Industriels des Céramiques Techniques (SICT)]
* [https://ceramique-technique.com/ Le Syndicat des Industriels des Céramiques Techniques (SICT)]


{{Portail|industrie|céramique|chimie|matériaux}}
{{Portail|industrie|céramique|chimie|matériaux}}

Dernière version du 9 janvier 2024 à 19:33

Pièces de roulements, composite Si3N4.
Surface d'une céramique composite.

La céramique technique est une branche de la science des matériaux traitant de la science et de la technologie de matériaux minéraux non métalliques ayant des applications industrielles ou militaires. Elle se distingue radicalement des créations artisanales (poterie) ou artistiques (céramique d'art) ainsi que des porcelaines à usage domestique. Cette discipline traite notamment de la recherche et du développement de céramiques présentant les propriétés physiques particulières, ce qui recouvre la purification de la matière première, l'étude et la production des composés chimiques nécessaires à la production du matériau fini, leur formation dans les constituants, et l'étude de leur structure, de leur composition et de leurs propriétés physiques et chimiques. Ces matériaux sont par exemple des oxydes, comme l'alumine Al2O3 et le dioxyde de zirconium ZrO2, des non-oxydes, qui sont souvent des céramiques ultraréfractaires (borures, carbures et nitrures de métaux réfractaires, céramiques renforcées de silicium voire de magnésium), ou encore des céramiques composites, qui sont des combinaisons des deux précédents.

Une céramique technique peut être entièrement cristalline ou partiellement cristallisée, avec une organisation à grande échelle au niveau atomique ; les céramiques vitreuses peuvent également avoir une structure amorphe dépourvue d'organisation à l'échelle atomique, ou avoir un degré d'organisation limité. L'ASTM définit une céramique comme « une pièce ayant un corps vitrifié ou non, de structure cristalline ou partiellement cristalline, ou en verre, dont le corps est formé de substances essentiellement minérales et non métalliques, et qui est formé par une masse en fusion qui se solidifie en se refroidissant, ou qui est formé et porté à maturité, en même temps ou ultérieurement, par l'action de la chaleur »[1] ; on peut également ajouter un mode d'obtention à basse température par précipitation de solutions chimiques hautement purifiées, comme la synthèse hydrothermale (en), ou par polymérisation, comme le procédé sol-gel.

Les propriétés particulières recherchées pour les céramiques techniques peuvent être par exemple de nature mécanique, électrique, magnétique, optique, piézoélectrique, ferroélectrique ou supraconductrice, ce qui rend compte de la très grande variété d'applications de ce type de matériaux, que ce soit en génie des matériaux, en génie électrique, en génie chimique et en génie mécanique. Les céramiques étant thermostables, elles peuvent remplir des fonctions auxquelles les polymères et les métaux sont impropres. C'est la raison pour laquelle on les retrouve dans des domaines aussi variés que l'industrie minière, l'industrie aérospatiale, la médecine, l'industrie agroalimentaire, l'industrie chimique, l'industrie des semiconducteurs, l'industrie nucléaire, le transport de l'électricité et les guides d'ondes électromagnétiques[2].

Généralités[modifier | modifier le code]

Les céramiques demeurent solides à température élevée, résistent bien aux chocs thermiques (comme les « tuiles » de la navette spatiale américaine) ainsi qu'au vieillissement et aux agressions climatiques ou chimiques. Les objets en céramique possèdent généralement une bonne résistance mécanique, une faible masse volumique, une dureté élevée et une bonne résistance à l'usure. Des imperfections dans le matériau, comme des fissures résultant d'un frittage incomplet, peuvent toutefois altérer ces propriétés. Leur utilisation est sans danger pour l'homme, et nombreuses sont celles qui sont biocompatibles, comme l'hydroxyapatite Ca5(PO4)3(OH) ; elles sont ainsi utilisées comme équipements sanitaires, médicaux ou alimentaires.

Les céramiques ont généralement une faible conductivité thermique. Elles sont généralement opaques ou translucides (verres amorphes), mais peuvent aussi être transparentes, comme l'alumine Al2O3, le nitrure d'aluminium AlN, l'oxyde d'yttrium(III) Y2O3 et le YAG Y3Al5O12, par exemple pour jumelles de vision nocturne ou systèmes de guidage de missile par infrarouge. Ce sont d'excellents isolants électriques et elles sont utilisées par exemple comme isolateurs pour circuits électriques ou lignes à haute tension. Dans certaines conditions, notamment des températures cryogéniques (quelques dizaines de kelvins), certaines céramiques deviennent supraconductrices.

Dans les céramiques, les liaisons entre atomes ont un caractère iono-covalent. Les liaisons ioniques ne sont pas directionnelles, elles tendent à maximiser les attractions coulombiennes et minimiser les répulsions isocharges, ce qui conduit à des arrangements d'anions et de cations compacts ; les liaisons covalentes sont directionnelles et conduisent quant à elles à des arrangements atomiques plus étendus. Le caractère plutôt ionique ou plutôt covalent d'une liaison chimique dépend de la différence d'électronégativité des atomes formant la céramique : d'une manière générale, une différence d'électronégativité élevée favorise les liaisons ioniques tandis qu'une différence faible favorise les liaisons covalentes ; ainsi, le fluorure de calcium CaF2 est essentiellement ionique tandis que le carbure de silicium SiC est essentiellement covalent, le dioxyde de silicium SiO2 étant intermédiaire.

Synthèse[modifier | modifier le code]

Les deux grands types de synthèse des matériaux céramiques sont dits par voie sèche et par voie humide, selon les conditions expérimentales et la mise en forme souhaitée.

Par voie sèche[modifier | modifier le code]

On applique un traitement thermique approprié, typiquement autour de 1 200 °C, à un mélange de précurseurs solides en poudre afin d'obtenir le matériau céramique souhaité. Il s'agit d'une réaction en phase solide à haute température employée surtout pour l'obtention de pièces massives, c'est-à-dire d'au moins 1 mm d'épaisseur. Les poudres sont finement broyées et portées à une température élevée mais inférieure à leur point de fusion de sorte que la réaction chimique se déroule au niveau des surfaces de contact entre les grains. Ce sont par exemple les réactions :

MgO + Fe2O3MgFe2O4 ;
BaCO3 + TiO2BaTiO3 + CO2.

Par ailleurs, les techniques d'ablation laser permettent la réalisation de couches minces de l'ordre du nanomètre.

Par voie humide[modifier | modifier le code]

Coprécipitation en solution[modifier | modifier le code]

Ce type de procédé est plus rapide et requiert des températures moins élevées que la voie sèche. Il permet de mieux contrôler la texture des poudres formées et peut être utilisé pour réaliser des couches minces de l'ordre du micromètre. Il consiste notamment en la précipitation simultanée en phase aqueuse de sels métalliques sous l'action d'une base forte, donnant des hydroxydes hydratés M1M2(OH)x·zH2O, ou sous l'action de l'acide oxalique HOOC–COOH, donnant des oxalates hydratés M1M2(C2O4)x·zH2O, l'eau de ces composés étant ensuite éliminée par chauffage. Dans la voie des hydroxydes métalliques obtenus sous l'action d'une base forte, il est important de se placer à un pH auquel ces hydroxydes coexistent, dans le cas présent à un pH de l'ordre de 9 à 10, afin qu'il y ait bien coprécipitation.

Par exemple, le ferrite de cobalt CoFe2O4 peut être obtenu en faisant coprécipiter des chlorures métalliques sous l'action de l'hydroxyde de sodium NaOH puis en chauffant les hydroxydes obtenus à environ 700 °C :

CoCl2 + 2 FeCl3·6H2O + 6 NaOHCo(OH)2 + 2 Fe(OH)3 + 6 NaCl + 6 H2O ;
Co(OH)2 + 2 Fe(OH)3 ⟶ CoFe2O4 + 4 H2O↑ à 700 °C.

Le ferrite spinelle mixte Ni0,5Zn0,5Fe2O4 peut être obtenu de manière semblable :

0,5 NiCl2·6H2O + 0,5 ZnCl2 + 2 FeCl3·6H2O + 8 NaOH ⟶ 0,5 Ni(OH)2 + 0,5 Zn(OH)2 + 2 Fe(OH)3 + 8 NaCl + 12 H2O ;
0,5 Ni(OH)2 + 0,5 Zn(OH)2 + 2 Fe(OH)3 ⟶ Ni0,5Zn0,5Fe2O4 + 4 H2O↑ à 700 °C.

A contrario, le titanate de baryum BaTiO3 peut être obtenu en faisant coprécipiter des chlorures métalliques sous l'action de l'acide oxalique, écrit H2(C2O4) par commodité ci-dessous :

TiCl3 + BaCl2·2H2O + 3 H2O + 2 H2(C2O4) ⟶ BaTiO(C2O4)2·4H2O↓ + 6 HCl ;
BaTiO(C2O4)2·4H2OBaTiO3 + 2 CO2 + 2 CO↑ à 700 °C.

Procédé sol-gel[modifier | modifier le code]

Représentation simplifiée de la condensation du TEOS Si(OEt)4.

Le procédé sol-gel permet de fabriquer un polymère inorganique par des réactions chimiques simples et à une température relativement proche de la température ambiante, c'est-à-dire entre 20 et 150 °C. La synthèse s'effectue à partir d'alcoolates de formule M(OR)n, où M est un métal ou un atome de silicium, et R un groupe organique alkyle CnH2n+1, par exemple l'orthosilicate de tétraéthyle Si(OCH2CH3)4 (TEOS). L'un des intérêts de ce procédé est que ces précurseurs existent pour un grand nombre de métaux et de métalloïdes. Ils sont soit liquides soit solides, auquel cas ils sont, pour la plupart, solubles dans les solvants usuels. Il est donc possible de préparer des mélanges homogènes de monomères (précurseurs) ou d'oligomères. Les réactions chimiques simples à la base du procédé sont déclenchées lorsque les précurseurs sont mis en présence d'eau : l'hydrolyse des groupes alcoolate intervient en premier, puis la condensation des produits hydrolysés conduit à la gélification du système. Ceci peut être illustré par les réactions de production du dioxyde de silicium SiO2 à partir d'alcoolates de type Si(OR)4, amorcées par leur hydrolyse donnant un intermédiaire hydroxylé HOSi(OR)3 à partir duquel se propage la réaction de polymérisation formant une série de liaison siloxane Si–O–Si avec libération d'eau H2O et d'alcools ROH :

Si(OR)4 + H2O ⟶ HOSi(OR)3 + ROH.
(OR)3SiOH + HOSi(OR)3 ⟶ (OR)3Si–O–Si(OR)3 + H2O ;
(OR)3SiOR + HOSi(OR)3 ⟶ (OR)3Si–O–Si(OR)3 + ROH.

L'hydrolyse complète des précurseurs peut être obtenue généralement à travers un excès d'eau ou l'utilisation de catalyseurs d'hydrolyse comme l'acide acétique CH3COOH ou l'acide chlorhydrique HCl. La formation d'intermédiaires tels que (OR)2Si(OH)2 ou (OR)3SiOH peut conduire à des hydrolyses partielles. Le procédé sol-gel permet de mettre le matériau final sous diverses formes, parmi lesquelles les monolithes, matériaux massifs de quelques millimètres cubes à quelques dizaines de centimètres cubes, et les couches minces, de quelques nanomètres à quelques dizaines de micromètres d'épaisseur.

Mise en forme[modifier | modifier le code]

À partir d'une poudre céramique[modifier | modifier le code]

Pour un frittage donnant une céramique de bonne qualité, les poudres doivent préalablement être broyées le plus finement possibles afin d'en améliorer la granulométrie et d'homogénéité. Elles sont ensuite mises en forme par pressage, extrusion, injection, coulage ou d'autres techniques de façonnage dépendant de la forme désirée, du degré d'humidité des poudres, ou encore de la nature du matériau. Le traitement thermique peut dans un premier temps conduire au déliantage, à la décarbonatation et à la déshydratation des poudres, puis assure la diffusion du matériau responsable du processus de frittage et de la consolidation de la céramique. La finition peut faire intervenir des étapes d'usinage, de polissage ou de revêtement de la pièce obtenue.
  • Pressage — Dans le pressage uniaxial, la poudre est compactée dans une matrice rigide à l'aide d'un poinçon. Le moule de pressage est métallique et les parties en contact avec la poudre peuvent être traitées pour résister à l'abrasion et à la corrosion. Cette technique conduit à la réalisation de pièces de forme simple, comme des joints ou des bagues de roulement mécanique. Dans le pressage isostatique, la poudre est compactée dans un contenant flexible maintenu par un moule support rigide. L'application de la pression se fait par l'intermédiaire d'un fluide à base d'huile et d'eau. Cette technique conduit à la réalisation de pièces de forme complexe, comme des tubes ou des bougies d'allumage.
Le frittage de céramiques techniques peut faire également appel à des techniques de pressage à chaud, voire de pressage isostatique à chaud.

Avec un liant polymère[modifier | modifier le code]

Schéma simplifié de la technique d'extrusion. 1 : Vis, 2 : pâte plastique à mettre en forme, 3 : fente à taille réglable, 4 : matériau mis en forme.

Le mélange polymère-céramique permet de mettre en forme une poudre céramique, ce qui permet l'obtention d'une pièce composite. Il est nécessaire de faire une étape de frittage à postériori de ces méthodes pour obtenir une pièce en céramique seule.

  • Extrusion — Le mélange préalablement plastifié et désaéré, est poussé à travers une filière de géométrie donnée à l'aide d'une vis. Après extrusion, les pièces sont coupées à la longueur désirée, puis subissent les traitements appropriés. Cette technique conduit à la réalisation de pièces aux formes complexes et de grandes dimensions, comme des tubes ou des tuyaux.
  • Fabrication additive — Diverses techniques de fabrication additive peuvent être utilisées pour former des composants en céramique, mais la nature réfractaire des céramiques empêche l'utilisation des technologies à rayon (SLS, EBM). Cependant les procédés de fabrication additive par extrusion(FFF), similaires au procédé d'extrusion, permettent de créer une pièce en déplaçant la buse d'extrusion pour faire du volume[3]. Projeter une poudre céramique sur une résine photosensible ou inversement est aussi une technique adaptée aux céramiques (Binder Jetting ou Material Jetting)[4].
  • Moulage par injection de poudre — Le mélange fluidifié est introduit dans un moule ayant la forme de la pièce à fabriquer. Le mélange thermofusible est chauffé dans une enceinte puis forcé à travers une buse dans le moule dont la température est inférieure au point de fusion du mélange. Après solidification, par abaissement de la température, la pièce est éjectée du moule. Cette technique conduit à la réalisation de pièces de formes simples ou complexes en série dont l'épaisseur maximale est de 1 cm.

Avec un liant liquide[modifier | modifier le code]

  • Coulage — Dans le coulage en moule poreux, le mélange est versé dans un moule ayant la forme de la pièce à fabriquer. La pièce est laissée se solidifier. Cette technique conduit à la réalisation de pièces volumineuses. Dans le coulage sous pression, une pression est appliquée à la suspension de coulage dans un moule poreux. Le gradient de pression force le fluide à travers le moule poreux et à travers la couche en formation, ce qui permet de diminuer le temps de prise de la suspension par rapport au coulage classique. Cette technique, particulièrement utilisée dans le domaine des céramiques traditionnelles conduit à la réalisation de pièces volumineuses. La productivité peut être élevée.

Par enduction[modifier | modifier le code]

Étapes du dip coating.
Étapes de l'enduction centrifuge (ou spin coating).

L'enduction se fait notamment à partir d'une pâte liquide issue du procédé sol-gel.

  • Enduction par trempage — Dite dip coating en anglais, c'est une technique de mise en forme de couches minces qui consiste à immerger le substrat de la pièce dans une cuve contenant la céramique en pâte liquide, extraire la pièce de la cuve et laisser s'écouler la couche. La pièce enrobée est ensuite séchée. Ce processus se déroule donc généralement en trois étapes :
    • immersion : le substrat est immergé dans la solution, contenant le matériau à mettre en forme, à une vitesse constante et préférablement sans secousses ;
    • temps de séjour : le substrat est laissé complètement immergé et immobile pour permettre au matériau de bien s'y appliquer et l'enrober ;
    • extraction : le substrat est extrait, de nouveau à vitesse constante et sans secousses. La vitesse d'extraction influe sur l'épaisseur de la couche : l'épaisseur de la couche est d'autant plus fine que la vitesse d'extraction du substrat est grande, mais elle dépend aussi de la concentration de soluté et du solvant.
  • Enduction centrifuge — Dite spin coating en anglais, c'est une technique de mise en forme de couches minces qui consiste à poser un excès de matériau en solution, à mettre en forme sur le substrat — généralement un wafer de semiconducteur — et à faire tourner le tout à vitesse élevée pour étaler le fluide sur toute la surface par centrifugation. La rotation continue pendant que le fluide dépasse les bords du substrat, jusqu'à ce que la couche ait l'épaisseur voulue. Par conséquent, la couche est d'autant plus fine que la vitesse de rotation est élevée, mais elle dépend aussi de la concentration de soluté et du solvant.

Oxydes technologiques[modifier | modifier le code]

Les oxydes technologiques sont composés majoritairement d'éléments métalliques et d'oxygène, comme l'alumine Al2O3, l'oxyde de fer(III) Fe2O3, les spinelles MgAl2O4 et CoFe2O4, le titanate de baryum BaTiO3, le dioxyde de titane TiO2etc.

À propriétés magnétiques[modifier | modifier le code]

Structure cristalline du spinelle MgAl2O4, vue le long de la direction [110]. Les atomes de magnésium sont représentés en jaune, ceux d'aluminium en gris et ceux d'oxygène en rouge. Les bords noirs représentent la maille élémentaire[5].

Ce sont des oxydes technologiques présentant des propriétés magnétiques ou ferromagnétiques. La première céramique magnétique à avoir été découverte est l'oxyde de fer(II,III) Fe3O4, ou magnétite.

La structure la plus commune des oxydes technologiques à propriétés magnétiques est la structure spinelle où les anions forment un empilement compact de géométrie cubique à faces centrées ou hexagonal compact et les cations se placent dans les lacunes tétraédriques ou octaédriques selon leur taille. Elle est de la forme A(B)2O4 avec en rouge les métaux occupant les sites tétraédriques et en vert ceux octaédriques. Il existe deux types de structures spinelles :

  • Spinelle directe : A2+(B3+)2O4. Exemple : MgAl2O4, Mg2+(Al3+)2O4.
  • Spinelle inverse : A3+(B2+A3+)O4. Exemple : CoFe2O4, Fe3+(Co2+Fe3+)O4.
Schéma simplifié du couplage antiferromagnétique des cations des sites tétraédriques et octaèdriques via l'oxygène.

Le magnétisme de ces matériaux a pour origine le moment magnétique porté par les atomes, qui a deux composantes : le moment magnétique de spin et le moment cinétique orbital.

Chaque cation métallique porte un moment magnétique dû au spin de ses électrons de valence. Par exemple, le fer ferrique Fe3+ est un métal de type d5 et à haut spin, ce qui fait que son moment magnétique vaut de l'ordre de 5µB, où µB est le magnéton de Bohr. Or à cet effet s'ajoute l'effet du superéchange qui résulte du couplage antiferromagnétique induit par l'oxygène entre les cations dans les lacunes tétraédriques et ceux dans les lacunes octaédriques. Ce couplage est antiferromagnétique parce que l'oxygène implique que les spins de ces deux types de cations soient opposés. Mais la valeur absolue des deux moments magnétiques cationiques n'étant pas identique, le moment magnétique résultant n'est pas nul, par conséquent le matériau est magnétique.

Dans le cas de la magnétite Fe3O4, la structure est de type spinelle inverse Fe3+(Fe2+Fe3+)O4. Le moment magnétique du fer ferrique Fe3+ vaut 5µB, tandis que celui du fer ferreux Fe2+ vaut 4µB. En raison du superéchange, le moment magnétique total vaut (5 + 4 – 5) µB = 4 µB, car les moments magnétiques des deux types de cations sont opposés.

Les applications des oxydes technologiques à propriétés magnétiques dépendent en particulier de leur mise en forme, comme l'enregistrement magnétique (bandes magnétiques) ou le stockage d'information (disques durs, CD).

À propriétés piézoélectriques[modifier | modifier le code]

Exemple de structure pérovskite cubique : le titanate de baryum BaTiO3 à haute température[6].

Les oxydes technologiques présentant des propriétés piézoélectriques ont la caractéristique de se polariser électriquement sous l’action d’une contrainte mécanique, et réciproquement de se déformer lorsqu’on leur applique un champ électrique. On parle d'effet direct et d'effet inverse, les deux étant indissociables : l'effet piézoélectrique direct induit une tension électrique sous l'effet d'une action mécanique, tandis que l'effet piézoélectrique inverse induit une action mécanique sous l'effet d'une tension électrique. Un cristal piézoélectrique est ferroélectrique s'il garde sa polarisation électrique après application d'un champ électrique. Très peu de matériaux sont ferroélectriques. Sans déformation, la structure pérovskite ne possède pas de moment dipolaire électrique car les anions et les cations sont disposés de manière symétrique, les cations étant au centre de leurs sites ; lorsque le réseau est déformé, par pression mécanique par exemple, les cations des lacunes octaèdriques sont décentrés, ce qui induit un moment dipolaire et donc une tension électrique.

La structure la plus commune des oxydes technologiques à propriétés piézoélectriques est un réseau cristallin orthorhombique formé par des octaèdres d'anions à l'intérieur desquels est emprisonné un cation relativement petit ; huit de ces octaèdres forment un cube possédant une lacune au centre de laquelle est emprisonné un autre cation relativement grand. Ce type de structure est appelé pérovskite. Un exemple en est le titanate de baryum BaTiO3, dont la structure cristalline est illustrée ci-contre. Dans cette illustration d'une pérovskite à haute température, la taille des ions n'est pas respectées afin de pourvoir visualiser clairement le polyèdre de coordination du titane. Le rayon de l'anion oxygène O2− est en réalité le plus grand.

Les oxydes technologiques piézoélectriques sont utilisés dans des capteurs (de pression, de température, microphones, microbalancesetc.) dans des actionneurs ou moteurs (microscope à force atomique, microscope à effet tunnel, optique adaptative en astronomie, autofocus des appareils photographiques, têtes d'écriture des imprimantes à jet d'encreetc.).

Les oxydes technologiques ferroélectriques sont utilisés pour le stockage de l'information.

À propriétés électriques[modifier | modifier le code]

Les oxydes technologiques diélectriques sont utilisés comme isolants électriques, par exemple comme isolateurs de lignes à haute tension.

À propriétés optiques[modifier | modifier le code]

Les photocatalyseurs, par exemple, sont utilisés pour la catalyse en dépollution, comme le dioxyde de titane TiO2, qui peut ainsi être déposée sur les bâtiments vitrés pour en prévenir les salissures grâce à ses propriétés oxydantes, ou sur un miroir pour éviter la formation de buée car il a un très bon mouillage avec l'eau.

Les cristaux photoniques permettent par exemple de réaliser des colorations structurelles, des composants d'optique intégrée (utilisant par exemple du niobate de lithium LiNbO3) ou des fibres à cristaux photoniques, par exemple en verre de quartz (dioxyde de silicium SiO2).

Méthodes de caractérisation[modifier | modifier le code]

Les méthodes de caractérisation des céramiques, de la poudre initiale au produit fritté, sont nombreuses : techniques d'analyse de surface (RX, MEB, MET, MFAetc.), mesure de la granulométrie, de la surface spécifique, de la densité (masse volumique), de la porosité, de la résistance mécanique, des paramètres rhéologiques et du comportement thermique.

  • Diffractométrie de rayons X — C'est une technique d'analyse fondée sur la diffraction des rayons X sur la matière. Elle permet, dans le cas des céramiques, de savoir si on a obtenu la phase désirée et si la réaction a bien eu lieu.
  • Microscopie électronique à balayage — La MEB est une technique de microscopie électronique fondée sur le principe des interactions électrons-matière. Elle permet, dans le cas des céramiques, de connaître la morphologie de la surface et de savoir si le frittage a eu lieu. Elle permet de voir par ailleurs que le frittage n'est jamais complet et qu'il reste toujours des microfissures appelées porosité résiduelle entre les plaques consolidées, ce qui rend les objets faits par voie céramique conventionnelle, cassants.
  • Microscopie électronique en transmission — La MET est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince, elle est donc particulièrement indiquée pour l'analyse des céramiques en couches très minces issues de l'ablation laser par exemple.
  • Microscopie à force atomique — La MFA est une technique de microscopie à champ proche, une sonde scanne la surface et est attirée ou repoussée selon la charge de la surface. Elle est donc particulièrement appropriée pour analyser les couches minces des oxydes à propriétés magnétiques.

Applications[modifier | modifier le code]

Les céramiques techniques tendent à remplacer les métaux dans un nombre croissant d'applications. Leur faiblesse majeure réside dans leur fragilité, liée à leur raideur, là où les métaux présentent une bonne résistance à la rupture en raison de leur ductilité. Elles tendent en revanche à réduire les contraintes locales accumulées sous l'effet de déformations élastiques et plastiques. Le développement de matériaux composites à fibres de céramiques a permis de réaliser des progrès significatifs en ce domaine et d'élargir sensiblement la gamme des applications des céramiques techniques.

On trouve des céramiques dans les roulements mécaniques et les joints d'étanchéité, comme des coques de paliers pour les turbines à gaz fonctionnant à plusieurs milliers de tours par minute et plus de 1 500 °C. Des garnitures mécaniques en céramique scellent les ouvertures permettant à des arbres à travers les pompes pour les protéger des agents corrosifs et abrasifs de l'environnement extérieur. C'est par exemple le cas dans les systèmes de désulfuration des fumées industrielles, où les paliers lisses en céramique des pompes sont exposés à du lait de chaux basique très concentré fortement chargé en sable. On retrouve des conditions semblables dans les systèmes de pompage pour le dessalement de l'eau de mer, dans lesquels des paliers lisses en céramique peuvent traiter de l'eau salée chargée de sable pendant plusieurs années sans être altérés par l'abrasion ni la corrosion.

La plupart des matériaux céramiques sont des isolants électriques, mais certains sont supraconducteurs, semiconducteurs ou sont utilisés comme éléments chauffants. Les céramiques semiconductrices sont utilisées pour les varistances (oxyde de zinc ZnO), les sondes thermiques, les démarreurs, la démagnétisation, les fusibles réarmables PTC.

Les céramiques sont généralement connues comme isolants, comme dans les bougies d'allumage et les isolateurs pour lignes à haute tension). Elles supportent des températures de 600 °C, par exemple dans le cas des bougies d'allumage ou des dispositifs d'allumage pour brûleurs à gaz. L'alumine Al2O3 des bougies d'allumage a une résistivité de 108 Ω cm à 600 °C. Les applications à chaud sont parmi les plus importantes des céramiques, notamment dans les poêles, les brûleurs et les éléments chauffants. Les céramiques ultraréfractaires peuvent fonctionner jusqu'à 2 500 °C sans déformation ni fatigue. La faible conductivité thermique et la très grande thermostabilité de ces matériaux, comme le diborure de zirconium ZrB2 et le diborure d'hafnium HfB2, font qu'ils sont utilisés comme isolants thermiques ou matériaux réfractaires, par exemple pour les tuiles des boucliers thermiques destinés à protéger les véhicules spatiaux et les missiles balistiques lors de leur rentrée atmosphérique, ou encore sur les bords d'attaque des aéronefs et des armes en vol hypersonique (en), voire pour recouvrir la structure métallique des aubes de turbines.

Avec les recherches sur les moteurs à combustion interne fonctionnant à des températures de plus en plus élevées, la demande en aubes de turbocompresseurs, pièces de moteurs et paliers en matériaux céramiques augmente significativement. Dès les années 1980, Toyota avait développé un moteur en céramique pouvant fonctionner à des températures élevées sans refroidissement, d'où un important gain de rendement et de poids par rapport aux moteurs à combustion interne classiques ; livré dans certaines motorisations de la 7e génération S120 de la Toyota Crown, il ne fut pas produit en grande série du fait de nombreuses difficultés industrielles, notamment du haut degré de pureté nécessaire.

L'utilisation des céramiques la plus importante en volume est sous forme de condensateurs céramiques (en). En raison de leur rigidité diélectrique élevée, les condensateurs de puissance (de) en céramique sont essentiels aux émetteurs d'ondes radioélectriques. Les propriétés optiques de certaines céramiques permettent leur utilisation dans les lampes à vapeur métallique (lampe à sodium, lampes à mercure), dans des diodes laser, ainsi que dans des détecteurs infrarouge. Leur inertie chimique et leur biocompatibilité en font des candidats valables pour les prothèses de la hanche et les prothèses dentaires. Les propriétés des céramiques peuvent également être utilisées pour réduire les frottements entre pièces mécaniques (roulements à billes céramiques par exemple) ou encore détecter des gaz, de l'humidité, agir comme catalyseur ou réaliser des électrodes. Des poudres céramiques à base de nitrure de titane TiN, par exemple, peuvent être utilisées comme lubrifiant solide.

Exemples de céramiques techniques[modifier | modifier le code]

Oxydes[modifier | modifier le code]

Matériau Formule chimique Propriétés notables Exemples d'applications
Alumine Al2O3 Bonne tenue mécanique aux températures élevées, bonne conductivité thermique, grande résistivité électrique, grande dureté, bonne résistance à l'usure, inertie chimique. Isolateurs électriques, supports d'éléments chauffants, protections thermiques, éléments de broyage, composants mécaniques, bagues d'étanchéité, prothèses dentaires.
Sialon Si12–mnAlm+nOnN16–n
Si6–nAlnOnN8–n
Si2–nAlnO1+nN2–n
Solution solide de nitrure de silicium Si3N4, de nitrure d'aluminium AlN et d'oxyde d'aluminium Al2O3.
Cordiérite (silicate alumineux ferro-magnésien) Mg2Al3AlSi5O18 Bonne résistance aux chocs thermiques, bonne conductivité thermique. Isolants électriques, échangeurs thermiques, éléments chauffants
Mullite 3Al2O3·2SiO2 ou 2Al2O3·SiO2 Bonne résistance aux chocs thermiques, conductivité thermique faible, résistivité électrique importante. Produits réfractaires.
Dioxyde de zirconium ZrO2 Excellentes propriétés mécaniques aux températures élevées, conductivité thermique faible à température ambiante, conducteur électrique à T > 1 000 °C, grande dureté, bonne résistance à l'usure, bonne inertie chimique, bonne résistance aux attaques des métaux. Il existe deux types : zircone non stabilisée, utilisée en tant qu'additif, matériau de revêtement, poudre abrasive... et zircone stabilisée à l'yttrium (ZrO2/Y2O3 = TZP) ou à la magnésie (ZrO2/MgO = PSZ). Creusets, buses de coulée, éléments chauffants, revêtement anti-thermique, conducteurs ioniques, prothèses dentaires.
Oxyde de zinc ZnO Utilisé dans les diodes pour ses propriétés électriques. Voir Varistance.
Oxyde de fer(II,III) Fe3O4 Utilisé dans les transformateurs et le stockage magnétique des données.
Pérovskites (A)(B)O3 Elles constituent une vaste famille de matériaux cristallins comprenant par exemple le titanate de baryum BaTiO3, le titanate de calcium CaTiO3 (pérovskite), le titanate de strontium SrTiO3, le (PbSr)TiO3 ou le Pb(Zr0,5Ti0,5)O3. Diélectriques pour la fabrication de condensateurs multicouches, thermistances, transducteurs piézoélectriques...
Orthosilicate de magnésium Mg2SiO4 Bonne résistivité électrique. Isolants électriques.
Oxyde de magnésium MgO Résistance aux métaux fondus, bonne résistance mécanique. Traitement des matériaux piézoélectriques, réfractaires, composants optiques.
Dioxyde d'uranium UO2 Combustible dans les réacteurs nucléaires.

Non-oxydes[modifier | modifier le code]

Matériau Formule chimique Propriétés notables Exemples d'applications
Nitrure de silicium Si3N4 Grande dureté, bonne résistance à l'usure et à l'abrasion, bonne inertie chimique, bonne résistance aux chocs thermiques. Il existe deux types de nitrure de silicium : lié par nitruration de poudre de silicium comprimée ou par pressage de la poudre de nitrure de silicium à température élevée (frittage). Poudres abrasives, outils de coupe, réfractaire pour la sidérurgie, billes de roulement, bagues d'étanchéité pour le moulage des métaux, soupapes (automobile).
Carbure de bore B4C Blindage des tanks et des hélicoptères.
Carbure de silicium SiC Grande dureté, bonne résistance aux chocs thermiques, grande conductivité thermique, faible dilatation thermique, excellente inertie chimique. Réfractaires, résistances chauffantes, outils de coupe, pièces de frottement, joints d'étanchéité des pompes à eau, support de catalyseur.
Nitrure d'aluminium AlN Conductivité thermique élevée, bonne résistance électrique, transparent aux longueurs d'onde du visible et de l'infra-rouge. Circuits imprimés, colonnes thermiques, fenêtres pour radar, creusets pour la fonderie.
Nitrure de bore BN Haute conductivité thermique, faible dilatation thermique, excellente résistance aux chocs thermiques, haute résistance diélectrique, faible constante diélectrique, inerte chimiquement, transparent aux micro-ondes, facilement usinable. Isolants électriques à très hautes températures, creusets pour la fonderie, garnitures de fours, gaines de thermocouples, supports de résistances, lubrifiant à haute température.
Diborure d'aluminium AlB2 Matériau de renforcement dans les composites métalliques.

Centres de formation et de recherche[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. (en) « Ceramic article – ASTM C 242 », Ceramic Tile Institute of America (consulté le ) :
    « An article having a glazed or unglazed body of crystalline or partly crystalline structure, or of glass, which body is produced from essentially inorganic, nonmetallic substances and either is formed from a molten mass which solidifies on cooling or is formed and simultaneously or subsequently matured by the action of the heat. »
  2. (en) W. David Kingery, H. K. Bowen et Donald R. Uhlmann, Introduction to Ceramics, Wiley-Interscience, 2e éd., 1976, p. 690. (ISBN 978-0-471-47860-7)
  3. (en) « 3D printing of ceramics: A review », Journal of the European Ceramic Society, vol. 39, no 4,‎ , p. 661–687 (ISSN 0955-2219, DOI 10.1016/j.jeurceramsoc.2018.11.013, lire en ligne, consulté le )
  4. (en) J. A. Gonzalez, J. Mireles, Y. Lin et R. B. Wicker, « Characterization of ceramic components fabricated using binder jetting additive manufacturing technology », Ceramics International, vol. 42, no 9,‎ , p. 10559–10564 (ISSN 0272-8842, DOI 10.1016/j.ceramint.2016.03.079, lire en ligne, consulté le )
  5. (en) H. Sawada, « An electron density residual study of magnesium aluminum oxide spinel », Materials Research Bulletin, vol. 30, no 3,‎ , p. 341-345 (DOI 10.1016/0025-5408(95)00010-0, lire en ligne)
  6. ICSD No. 43125 ; DOI Gotor F.J., Real C., Dianez M.J. & Criado J.M. ''Journal of Solid State Chemistry'' (1996) 123, 301–305
  7. Lycée professionnel de la Céramique.
  8. Lycée Henri Brisson ex ENP.
  9. Lycée des Métiers Le Mas Jambost.
  10. Centre de Transfert de Technologies Céramiques.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • (en) Roger H. Mitchell, Perovskites : Modern and ancient, Thunder Bay, Almaz Press, , 318 p. (ISBN 978-0-9689411-0-2)

Liens externes[modifier | modifier le code]