Aller au contenu

Aluminium

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 3 octobre 2012 à 19:58 et modifiée en dernier par 66.119.129.60 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Modèle:Élément/Aluminium

L'aluminium est un élément chimique, de symbole Al et de numéro atomique 13. C’est un métal pauvre, malléable, de couleur argentée, qui est remarquable pour sa résistance à l’oxydation et sa faible densité. C'est le métal le plus abondant de l'écorce terrestre et le troisième élément le plus abondant après l'oxygène et le silicium ; il représente en moyenne 8 % de la masse des matériaux de la surface solide de notre planète. L'aluminium est trop réactif pour exister à l'état natif dans le milieu naturel : on le trouve au contraire sous forme combinée dans plus de 270 minéraux différents, son minerai principal étant la bauxite, où il est présent sous forme d’oxyde hydraté dont on extrait l’alumine. Il peut aussi être extrait de la néphéline, de la leucite, de la sillimanite, de l'andalousite et de la muscovite.

L'aluminium métallique est très oxydable, mais est immédiatement passivé par une fine couche d'alumine Al2O3 imperméable de quelques micromètres d'épaisseur qui protège la masse métallique de la corrosion. On parle de protection cinétique, par opposition à une protection thermodynamique, car l’aluminium reste en tout état de cause très sensible à l'oxydation. Cette résistance à la corrosion et sa remarquable légèreté en ont fait un matériau très utilisé industriellement.

L'aluminium est un produit industriel important, sous forme pure ou alliée, notamment dans l'aéronautique, les transports et la construction. Sa nature réactive en fait également un catalyseur et un additif dans l'industrie chimique ; il est ainsi utilisé pour accroître la puissance explosive du nitrate d'ammonium.

La production mondiale de bauxite atteignait 211 millions de tonnes en 2010[1], l'Australie en assurant 33,2 % devant la Chine (19,0 %), le Brésil (15,2 %), l'Inde (8,5 %) et la Guinée (8,2 %) – la Guinée détient à elle seule plus du quart des réserves mondiales de bauxite, estimées fin 2010 à 28 milliards de tonnes. La production mondiale d'aluminium métallique s'est élevée à 41,4 millions de tonnes en 2010[2], dont la Chine a réalisé 40,6 % avec 16,8 millions de tonnes, loin devant la Russie (9,3 %) et le Canada (7,1 %).

nono ==

Aluminium à l’état naturel

En 1807, Humphry Davy, après avoir découvert que le pench et le potassium entraient dans la composition de l’alun, suppose qu’il s’y trouve aussi un autre métal, qu’il baptise « aluminium » (en latin, « alun » se dit alumen). Pierre Berthier découvre dans une mine près des Baux-de-Provence en 1821 un minerai contenant plus de 50 % d’oxyde d’aluminium. Ce minerai sera appelé bauxite.

On attribue généralement la découverte et l’isolement de l’aluminium à Friedrich Wöhler en 1827. Toutefois, deux ans plus tôt, le chimiste et physicien danois Hans Christian Ørsted avait réussi à produire une forme impure du métal. Wöhler fut le premier à mettre en évidence les propriétés chimiques et physiques de l’aluminium, dont la plus notable est la légèreté.

Le chimiste français Henri Sainte-Claire Deville améliore en 1846 la méthode de Wöhler en réduisant le minerai par le sodium. Il publie ses recherches dans un livre en 1856. Cette méthode est utilisée à travers toute l’Europe pour la fabrication de l’aluminium, mais elle reste extrêmement coûteuse. Le métal est d’ailleurs utilisé pour fabriquer des bijoux, dont la valeur sera évidemment réduite à néant quelques décennies plus tard.

  • 1855 : Les nouveaux métaux sont exposés à l’exposition universelle de Paris. La société Pechiney est créée en France.
  • Le premier site industriel producteur d’aluminium au monde s’installe à Salindres dans le Gard, et commence son activité dès 1860.
  • 1876 : William Frishmuth réalise la première coulée d’aluminium. En 1884, il réalise la coiffe du Washington Monument en ce métal.
  • 1886 : de manière indépendante, Paul Héroult et Charles Martin Hall découvrent une nouvelle méthode de production de l’aluminium en remarquant qu’il est possible de dissoudre l’alumine et de décomposer le mélange par électrolyse (procédé Héroult-Hall) pour donner le métal brut en fusion. Pour cette découverte, Hall obtient un brevet (400655) la même année. Ce procédé permet d’obtenir de l’aluminium de manière relativement économique. La méthode mise au point par Héroult et Hall est toujours utilisée aujourd’hui.
  • 1887 : Karl Josef Bayer décrit une méthode connue sous le nom de procédé Bayer pour obtenir de l’alumine à partir de la bauxite. Cette découverte permet de faire entrer l’aluminium dans l’ère de la production de masse.
  • 1888 : les premières sociétés de production d’aluminium sont fondées en Suisse, France et aux États-Unis.
  • de 1941 à 1959, la France a frappé des pièces de monnaie de 50 c, 1 F, 2 F et 5 F en aluminium. Auparavant, pendant la première guerre mondiale et dans les années 1920, de très nombreuses monnaies de nécessité avaient déjà été frappées en France et à l'étranger.

Isotopes

L'aluminium possède 22 isotopes connus, de nombre de masse variant entre 21 et 42, ainsi que quatre isomères nucléaires. Seul 27Al est stable, ce qui fait de l'aluminium un élément monoisotopique. Si le radioisotope 26Al existe également dans la nature (demi-vie de 7,17×105 années), l'abondance de 27Al est telle qu'on considère l'aluminium comme mononucléidique et on lui attribue une masse atomique standard de 26,981 538 6(8) u. Tous les autres isotopes de l'aluminium ont une demi-vie inférieure à 7 minutes, et la plupart d'entre eux ont une demi-vie inférieure à une seconde.

Propriétés

Propriétés physiques

L’aluminium est un métal mou, léger, mais résistant avec un aspect argent-gris mat, dû à une mince couche d’oxydation de cinq à dix nanomètres qui se forme rapidement quand on l’expose à l’air et qui empêche la corrosion de progresser dans des conditions normales d’exposition chimiques. Ce film composé d'alumine se forme spontanément très rapidement quand l’aluminium est mis en contact avec un milieu oxydant comme l’oxygène de l’air. À la différence de la plupart des métaux, il est utilisable même s’il est oxydé en surface. On peut même dire que sans cette couche d’oxyde, il serait impropre à la plupart de ses applications. Il est possible d’augmenter artificiellement l’épaisseur de cette couche d’oxydation par anodisation, ce qui permet d’augmenter la protection et de décorer les pièces en colorant la couche d’oxyde. Contrairement à l’aluminium qui est un très bon conducteur, l’oxyde d’aluminium est un excellent isolant.

L’aluminium a une densité (2,7) environ trois fois plus faible que celle de l’acier ou du cuivre ; il est malléable, ductile et facilement usiné et moulé. C’est le deuxième métal le plus malléable et le sixième le plus ductile.

Il est paramagnétique et ne provoque pas d’étincelles.

Bombardé par un laser à électrons libres, l’aluminium devient transparent dans les ultraviolets extrêmes[3].

Propriétés chimiques

En solution, l’aluminium se trouve le plus généralement sous la forme d’ions Al3+. Il s’oxyde lentement à froid et rapidement à chaud pour former l’alumine Al2O3. L’action des acides sur l’aluminium produit l’ion cité plus haut.

La réaction de l'aluminium avec une solution aqueuse d'hydroxyde de sodium (soude) produit de l’aluminate de sodium et du dihydrogène gazeux, selon une réaction exothermique d’équation :

Les hydroxydes d’aluminium s’obtiennent en général en précipitant une solution contenant des cations Al3+ à l’aide d’une base. Cette méthode permet de former selon les conditions de précipitation différentes phases cristallographiques tel que la bayerite, la boehmite, la gibbsite.

L’aluminium est aussi utilisé en tant que réducteur fort, notamment pour l’aluminothermie et en pyrotechnie dans les feux d'artifice, où il joue un rôle similaire au magnésium, à moindre coût et avec une puissance plus grande.

Cinétique dans l'organisme humain, et élimination

L'organisme d'un sujet sain contient au total de 30 à 50 mg (ATSDR 1999), surtout présent dans l’os (+/- 50 %), le poumon (environ 25 %) et le foie (20 à 25 %). Le reste est partagé dans d'autres organes, dont le système nerveux central et la rate. Les taux tissulaires et notamment dans le poumon et le cerveau augmentent avec l’âge (ATSDR 1999).
Le traçage isotopique (isotope radioactif 26Al) d'aluminium injecté montre que 24 h après l’injection, 99 % de l’aluminium sanguin est passé dans la fraction plasmatique. Peu à peu, le taux intra-érythrocytaire augmente pour atteindre 14 %. L'aluminium se lie, dans le plasma, préférentiellement à la transferrine (80 %), et à l'albumine à hauteur de 10 %, les 10 % restant sont transportés par des protéines de bas poids moléculaire (LMW). L'Al-transferrine se dépose surtout dans la rate et le foie (riches en récepteurs-transferrine), pendant que l'Al-LMW se fixe dans l’os (qui ne contient pas de récepteurs-transferrine) [4]. L'homme élimine plus de 95 % de l'aluminium ingéré dans les fèces, et 83 % de l'aluminium qui aura passé la barrière intestinale sera éliminé par voie urinaire (avec une fonction rénale normale, la dose éliminée varie de 3 à 20 μg/ℓ d'urine [5],[6],[7],[8]. Des chélateurs (EDTA, déféroxamine...) en accélèrent l'élimination). La demi-vie dans l'organisme varie selon l'importance et la durée d’exposition et la durée de la redistribution de l’aluminium à partir des organes qui l'ont stocké. Elle peut durer plusieurs années. Elle est triphasique : en phase 1, la moitié de l'aluminium est éliminé en quelques heures, en phase deux, 50 % de ce qui reste est éliminé en quelques semaines, et il faut habituellement plus d'un an pour éliminer la moitié du reste [9].

Toxicologie

Dans certaines conditions, l’aluminium est reconnu pour ses effets neurotoxiques[10]. L'« encéphalopathie des dialysés » (ou « démence des dialysés ») observée dès 1972, a pu être attribuée en 1978 à l'aluminium contenu dans le dialysat, qui s'ajoute à un apport oral d'hydroxyde d'aluminium visant à contrôler l'hyperphosphorémie du patient[11]. Des personnes exposées à l’aluminium (suite à un traitement de dialyse) peuvent développer des complications au niveau du système nerveux central, la myofasciite à macrophages, l’encéphalopathie, l’épilepsie et des troubles de mémoire. L’accumulation d’aluminium dans l’organisme peut aussi jouer un rôle dans d’autres maux comme le psoriasis, les insuffisances hépatorénales chroniques, l’anémie, l’ostéomalacie (os cassants ou mous), l’intolérance au glucose et les arrêts cardiaques chez les humains. Les cellules du cerveau des patients atteints d’Alzheimer contiennent de 10 à 30 fois plus d’aluminium que la normale[12]. La réglementation européenne impose maintenant aux centres de dialyse de mieux contrôler l'exposition des dialysés à l'aluminium, ce qui s'est traduit par une diminution de leurs taux sériques moyens, avec une diminution de 61,8 ± 47,5 μg/ℓ en 1988 à 25,78 ± 22,2 μg/ℓ en 1996 [11].

Une étude de l'Institut français de Veille sanitaire (INVS), en 2003, a montré le manque de données suffisantes pour confirmer ou infirmer les conséquences de l’aluminium sur la santé. Par exemple, la qualité des eaux de boisson est très suivie, mais non les effets des emballages en aluminium[13].

On peut trouver de l’aluminium dans les aliments, l’eau, les cosmétiques (en particulier les déodorants / antitranspirants sous forme de sels d'aluminium), les vaccins, les médicaments anti-acides, l’eau pour la dilution des concentrés pour hémodialyse, lorsqu’elle provient d’une station de production inefficace, ainsi que les poches de nutrition parentérale[14]. Les ustensiles de cuisine et le papier d’aluminium peuvent également en libérer (en quantité généralement négligeable) dans les aliments. C’est pourquoi son utilisation dans la fabrication de conduites d’eau est prohibée dans plusieurs pays. Cependant, le sulfate d'aluminium est utilisé dans le traitement des eaux.

Une hypothèse associe l'aluminium contenu dans les vaccins à la myofasciite à macrophages car il est retrouvé dans des biopsies musculaires[15].

En France, la campagne massive de vaccination suite à la Grippe A (H1N1) de 2009-2010 a relancé la polémique sur les risques de santé liés à cet élément car 47 % des vaccins commercialisés contiennent comme adjuvant de l'aluminium[16].

Une des premières statues coulées en aluminium (1893), L’Ange de la charité chrétienne souvent appelé Eros trônant sur le Shaftesbury Memorial situé à Piccadilly Circus, à Londres
Lingot d’aluminium
Raies d’émission
Bauxite (Hérault)
Production mondiale d’aluminium
Production mondiale d’aluminium primaire. Source : International Aluminium Institute

Alimentation

Malgré la toxicité reconnue de ce métal, l'aluminium est repris comme additif alimentaire, son numéro SIN est E173[17],[18].


30% des Chinois consomment trop d'aluminium et dépassant la ration hebdomadaire tolérable provisoire (PTWI). [19]. Dans le nord de la Chine les habitants consomment environ de 5,1 mg d'aluminium par kilogramme de poids du corps, soit 2,6 fois plus élevée que le volume recommandé par l'Organisation mondiale de la Santé.

Prix au kilogramme

Au , la tonne d'aluminium de première fusion s'échangeait à 3 500 USD, soit 2 530 EUR, d'où un prix au kilogramme de 2,53 .

Alliages remarquables et utilisations

En tonnage et en valeur, l’aluminium est le métal le plus utilisé après le fer, grâce à sa légèreté et sa bonne conductivité électrique et thermique. L’aluminium pur est mou et fragile, mais avec des petites quantités de cuivre, magnésium, manganèse, silicium et d’autres éléments, il peut former des alliages aux propriétés variées.

Parmi les secteurs utilisant l’aluminium, on peut citer :

Outil de datation

  • En géomorphologie et paléosismologie, l’isotope 26Al, créé par les rayons cosmiques, est utilisé pour la datation par isotopes cosmogéniques de surfaces ou la détermination de taux d’érosion.
  • Le système solaire provient d'une nébuleuse où le 26Al était autrefois réparti de manière homogène (à ± 10 % ; ceci est démontré par l'analyse des chondres des météorites les plus anciennes). Il se désintègre en magnésium avec une demie-vie de 0,73 million d'années, ce qui constitue un étalon pour évaluer la date de formation des premiers solides du systèmes solaire[21]. Ceci pourra aider à mieux connaître le calendrier de la formation des premiers solides du système solaire.[réf. nécessaire]

Gisements

L’aluminium est un élément abondant dans la croûte terrestre mais il se trouve rarement sous sa forme pure[22]. C’est le troisième élément le plus abondant dans la croûte terrestre (8 % de la masse) après l’oxygène et le silicium. L’aluminium est très difficile à extraire des roches qui le contiennent et a donc été rare et précieux avant sa production en masse.

Le principal minerai d’aluminium est la bauxite.

Production

La bauxite contient de l’alumine (Al2O3), qu’il faut d’abord extraire. Pour cela la bauxite doit être traitée par une solution de soude.

On obtient un précipité de Al(OH)3 qui donne de l’alumine par chauffage. L’aluminium est extrait par électrolyse : l’alumine est introduite dans des cuves d’électrolyse avec des additifs comme la cryolithe (Na3AlF6), le fluorure de calcium (CaF2), le fluorure de lithium et d’aluminium (Li3AlF6) et le fluorure d’aluminium (AlF3) afin d’abaisser le point de fusion de 2 040 °C à 960 °C.

La production d’une tonne d’aluminium nécessite de quatre à cinq tonnes de bauxite. Elle nécessite entre 13 000 et 17 000 kWh (entre 47 et 61 GJ). Lors de l’électrolyse, sont émis des gaz tels que du dioxyde de carbone, (CO2), du monoxyde de carbone (CO), des hydrocarbures aromatiques polycycliques (HAP), et des fluorures gazeux. Dans les meilleures usines, le monoxyde de carbone (CO) et les hydrocarbures aromatiques polycycliques (HAP) sont brûlés ou recyclés comme source de carbone, et les fluorures sont retournés dans le bain d’électrolyse.

Statistiques de production[23]

La production mondiale d’aluminium secondaire à partir du recyclage s’est élevée à 7,6 Mt en 2005, soit 20 % de la production totale de ce métal.

Production d’aluminium en milliers de tonnes
Année Afrique Amérique
du Nord
Amérique
latine
Asie Europe
et Russie
Océanie Total
1973 249 5 039 229 1 439 2 757 324 10 037
1978 336 5 409 413 1 126 3 730 414 11 428
1982 501 4 343 795 1 103 3 306 548 10 496
1987 572 4 889 1 486 927 3 462 1 273 12 604
1992 617 6 016 1 949 1 379 3 319 1 483 14 763
1997 1 106 5 930 2 116 1 910 6 613 1 804 19 479
2003 1 428 5 945 2 275 2 457 8 064 2 198 21 935
2004 1 711 5 110 2 356 2 735 8 433 2 246 22 591

Recyclage

L’aluminium a une excellente recyclabilité théorique, mais il faut le collecter, le trier et le faire fondre, ce qui nécessite une quantité importante d’énergie.
En plus des bénéfices environnementaux, le recyclage de l’aluminium est beaucoup moins coûteux que l’extraction à partir du minerai de bauxite. Il nécessite 95 % d’énergie en moins et une tonne d’aluminium recyclé permet d’économiser quatre tonnes de bauxite. En sautant l’étape de l’électrolyse, qui réclame beaucoup d’énergie, on évite les rejets polluants qui lui sont associés. L’aluminium est quasiment recyclable à l’infini sans perdre ses qualités, à condition de ne pas fondre dans un même bain des alliages de composition différente. Pour cette raison les producteurs refusent une partie significative de l’aluminium récupéré dans les déchets ménagers.

Le recyclage de l’aluminium a commencé à être pratiqué dans les années 1900 et a régulièrement progressé : dans la consommation d’aluminium en Europe, la part d’origine recyclage est passée de 50 % en 1980 à plus de 70 % en 2000. Il existe différentes filières industrielles de récupération de l’aluminium.

Après la Seconde Guerre mondiale la pénurie a conduit à refondre des alliages d’aluminium pour en faire des pièces n’exigeant pas de caractéristiques mécaniques précises, et en particulier des ustensiles de cuisine. La composition des alliages obtenus n’était pas appréciée des fondeurs qui les qualifiaient de « cochonium ». Les casseroles ainsi réalisées se piquaient (corrosion par piqûre), sous l’effet de l’acidité des aliments. Les conséquences d’une alimentation polluée ont déjà été évoquées.

En France, l’aluminium des décharges des déchets industriels et assimilés est récupéré et broyé puis refondu par des affineurs d’aluminium pour produire l’aluminium de seconde fusion. Ce dernier est essentiellement utilisé pour fabriquer des pièces de fonderie pour l’automobile (blocs moteur, culasses, pistons, etc.). L’aluminium « ménager » est récupéré avec les emballages dans le cadre du tri sélectif. Dans les centres de tri, l’aluminium est trié manuellement ou plus couramment grâce à des machines de tri par courants de Foucault. En 2010, 20 % de l’aluminium récupéré dans les poubelles est classé en refus de tri (refusé par les industriels) et envoyé en enfouissement ou en incinération où il contribue à polluer l’environnement. En 2009, en France, 32 % des emballages en aluminium ont été recyclés. Les petites canettes métalliques, les canettes écrasées, les feuilles d’aluminium froissées, emballages de type Nespresso, etc. sont rejetées par le processus de tri du fait de leur taille, de même que le papier aluminium et divers composés contenant de l’aluminium (environ 50 000 t/an, rien que pour la France). Nespresso, les fabricants de barquettes en aluminium ou de rouleau en aluminium ne payent pas la taxe éco-emballage ; les centres de tri ne sont donc pas financé pour les trier à fin de recyclage.[réf. nécessaire]
En 2010, des industriels ont créé un club du recyclage de l’emballage léger en aluminium et en acier (Celaa). Les tests faits en 2010 dans trois départements ont montré qu’il était parfaitement possible de recycler des produits tels que les capsules de machines à café familiale, feuilles d’aluminium et d’autres petits éléments ; cela augmenterait de 4 à 5 % le recyclage de l’acier et de 20 % celui de l’aluminium. Deux expérimentations sont prévues en 2011 en Île-de-France[24].

Dans certains pays en voie de développement[Lesquels ?], le recyclage non contrôlé de matières à base d’aluminium conduit encore de nos jours à réaliser des ustensiles alimentaires avec des teneurs en éléments nocifs (nickel, cuivreetc.). Néanmoins, le recyclage des alliages d’aluminium, effectué sérieusement, avec un contrôle précis de la composition, donne d’excellents résultats.

Les cinq premiers producteurs mondiaux

Dans la liste de producteurs d’aluminium dans le monde, les cinq principaux sont en 2006[25] :

Pollution

Trois types de pollutions sont engendrées par la production de l’aluminium[26]:

  • une pollution par les rejets de production d'alumine à partir de la bauxite, dites boues rouges stockées dans des aires protégées par des digues; ces boues sont caustiques (soude) et contiennent divers métaux ;
  • une pollution fluorée lors de la transformation de l’alumine en aluminium ;
  • des rejets gazeux au-dessus des cuves d’électrolyse, qui doivent être captés.

Incidents graves liés à l'industrie de l'aluminium

Le , un réservoir de l’usine de production de bauxite-aluminium, Ajkai Timfoldgyar Zrt, située à Ajka, à 160 kilomètres de Budapest, s’est rompu déversant entre 600 000 et 700 000 mètres cube de boue rouge toxique composée d’éléments nocifs et très corrosifs qui ont inondé trois villages dans un rayon de 40 km2 avant d’atteindre le Danube menaçant l’écosystème du grand fleuve avec un taux alcalin légèrement au-dessus de la normale[27][source insuffisante],[28],[29],[30].

Le bilan des pertes humaines s’élève à 9 morts et plus de 150 blessés, l’écosystème à proximité de l’usine a été entièrement détruit, la marée rouge a emporté avec elle le bétail et les animaux de fermes, des milliers de poissons ont péri. Le gouvernement hongrois a décrété l’état d’urgence[31],[32]. La région demeure sous le risque d’une deuxième inondation semblable après que plusieurs fissures ont été remarquées sur le réservoir nord menaçant de déverser 500 000 mètres cube de boue rouge de plus[33],[34].

Notes et références

  1. (en) USGS Minerals – 2011 « Bauxite. »
  2. (en) USGS Minerals – 2011 « Aluminum. »
  3. (en) B. Nagler et al., « Turning solid aluminium transparent by intense soft X-ray photoionization », Nat. Phys., vol. 5, no 9,‎ , p. 693-696 (ISSN 1745-2473, DOI 10.1038/nphys1341)
  4. (en) J.-P. Day et al., « Biological chemistry of aluminium studied using 26Al and accelerator mass spectrometry », Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 92, nos 1-4,‎ , p. 463-468 (DOI 10.1016/0168-583X(94)96055-0)
  5. (en) W. D. Kaehny, A. P. Hegg et A. C. Alfrey, « Gastrointestinal Absorption of Aluminum from Aluminum-Containing Antacids », N. Engl. J. Med., vol. 296, no 24,‎ , p. 1389-1390 (ISSN 0028-4793, DOI 10.1056/NEJM197706162962407)
  6. (en) S. Valkonen et A. Aitio, « Analysis of aluminium in serum and urine for the biomonitoring of occupational exposure », Sci. Total Environ., vol. 199, nos 1-2,‎ , p. 103-110 (ISSN 0048-9697, DOI 10.1016/S0048-9697(97)05485-5)
  7. Aitio A, Riihimäki V, Valkonen S. Aluminium. In Biological monitoring of chemical exposure in the wor place, WHO, Genève 1996; 2:1-17
  8. Lauwerys R.R, Hoet P. Industrial chemical exposure : Guidelines for biological monitoring. Lewis publishers. 3rd Ed 2001; 638p.
  9. Bismuth C. Toxicologie clinique. Médecine-Sciences. Ed. Flammarion, 2000; 1092p.
  10. Effets éventuels de l'aluminium sur la santé
  11. a et b Neuro toxicité de l'aluminium
  12. (en) C. R. Harrington, C. M. Wischik, F. K. McArthur, G. A. Taylor, J. A. Edwardson et J. M. Candy, « Alzheimer's-disease-like changes in tau protein processing: association with aluminium accumulation in brains of renal dialysis patients », Lancet, vol. 343, no 8904,‎ , p. 993-997 (ISSN 0140-6736, DOI 10.1016/S0140-6736(94)90124-4)
  13. Claire Gourier-Fréry, Nadine Fréry, Claudine Berr, Sylvaine Cordier, Robert Garnier, Hubert Isnard, Coralie Ravault, Claude Renaudeau IVS, 2003, Aluminium - Quels risques pour la santé ?, PDF, 184 pages
  14. Évaluation des risques sanitaires liés à l’exposition de la population française à l’aluminium : eaux, aliments, produits de santé (AFFSSA, 2003)
  15. Central nervous system disease in patients with macrophagic myofasciitis
  16. Virginie Belle, Quand l'aluminium nous empoisonne - Enquête sur un scandale sanitaire, Éd. Max Milo, 2010
  17. Codex alimentarius, « Noms de catégories et systèmes international de numérotation des additifs alimentaires », sur http://www.codexalimentarius.net, (consulté le )
  18. E173
  19. http://french.peopledaily.com.cn/VieSociale/7965262.html
  20. (en) P. V. Liddicoat, X.-Z. Liao, Y. Zhao, Y. Zhu, M. Y. Murashkin, E. J. Lavernia, R. Z. Valiev et S. P. Ringer, « Nanostructural hierarchy increases the strength of aluminium alloys », Nat. Commun., vol. 1,‎ (DOI 10.1038/ncomms1062)
  21. (en) J. Villeneuve, M. Chaussidon et G. Libourel, « Homogeneous Distribution of 26Al in the Solar System from the Mg Isotopic Composition of Chondrules », Science, vol. 325, no 5943,‎ , p. 985-988 (ISSN 0036-8075, DOI 10.1126/science.1173907)
  22. Photo d’un fragment naturel de roche contenant de l’aluminium
  23. (en) International Aluminium Institute.
  24. Recyclage : Oui, on peut recycler les emballages légers en alu, Environnement-Magazine, 1er février 2011, consulté le 6 février 2011.
  25. M. Prandi, « Rusal devient un actionnaire de référence de Norilsk Nickel », Les Échos, no 20074,‎ , p. 26 (ISSN 0153-4831, lire en ligne).
  26. http://www.emt-india.net/process/aluminium/pdf/TheBauxiteMiningandAluminaRefiningProcess.pdf
  27. « Hongrie : entre 600 000 et 700 000 m3 de boue rouge se sont déversés », Le Nouvel Observateur,‎ (ISSN 0029-4713, lire en ligne).
  28. « Hongrie. Controverse autour des boues toxiques », La Dépêche du Midi,‎ (lire en ligne).
  29. HONGRIE : 1,1 million de mètres cube de boue dans le Danube, afriqueactu.net, publié le 7 octobre 2010.
  30. Boues rouges en Hongrie : une catastrophe européenne majeure et prévisible, CDURABLE.info, publié le 7 octobre 2010.
  31. Hongrie/boues : 9 morts (nouveau bilan), LeFigaro.fr, publié le 13 octobre 2010.
  32. http://www.radinrue.com/spip.php?article6044
  33. La Hongrie s’attend à une nouvelle inondation de boue rouge toxique, Libération, publié le 9 octobre 2010.
  34. Hongrie : une 2e marée rouge « probable », RTLinfo.be, publié le 9 octobre 2010.

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Métallurgie extractive de l’aluminium

Alliage d’aluminium

Transformation de l’aluminium

Liens externes


  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides    

Modèle:Lien BA