Résistance au pivotement

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 11 mars 2015 à 15:40 et modifiée en dernier par Cdang (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

La résistance au pivotement désigne l'ensemble des phénomènes qui s'opposent au mouvement de rotation d'une pièce autour d'un axe (ou arbre). Il est différent de la résistance au roulement qui concerne le mouvement d'une roue par rapport à son support.

Les phénomènes physiques sont :

Si d'un point de vue microscopique, les phénomènes sont différents, en revanche, d'un point de vue macroscopique, ils sont pris en compte de la même manière, par un coefficient d'adhérence ou de frottement noté μ ou ƒ, ou bien par un angle d'adhérence ou de frottement φ (μ = tan φ).

Frottement tangentiel

Frein à sabot ou à tambour

Les freins à sabot ou à tambour constituent un contact frottant sur une circonférence. Il peut s'agir :

  • de la circonférence de l'arbre ;
  • de la circonférence extérieure de la roue pour les freins à sabot (chariots à cheval, trains) ;
  • de la circonférence intérieure de la roue pour les freins à tambour.


Principe du frein à sabot.

Considérons un petit élément de la surface de contact, suffisamment petit pour que l'on puisse considérer qu'il est plan. La force normale dN est une force radiale, le frottement résultant dT est une force tangentielle, et l'on a :

dT = μdN.

Cette force tangentielle crée un moment par rapport à l'axe de rotation valant

dM = R⋅dT,

R étant le rayon de la surface de contact.

Si l'effort normal se répartit de manière uniforme, ce qui est le cas si le sabot couvre un angle faible, on obtient donc le moment de résistance au roulement :

M = R⋅μ⋅N

N étant l'effort presseur.

Dans le cas d'un frein à tambour à mâchoire intérieure (frein de tambour de voiture), on considère que la pression de contact varie selon le sinus de l'angle polaire θ (θ = 0 pour le pivot du sabot) :

p = p0⋅sin θ.

En intégrant, on a un couple résistant valant[1] :

M = μ⋅p0br2(cos θ1 - cos θ2)

  • b est la largeur de la mâchoire ;
  • θ1 et θ2 sont les limites de la mâchoire.

Dans le cas d'un frein à tambour à mâchoire extérieure, supposé symétrique par rapport à l'articulation (θ2 = -θ1), on a[1]

p = p0⋅cos θ

et

M = 2⋅μ⋅p0br2sin θ1

Palier lisse

Palier soumis à une charge radiale (le jeu est représenté de manière amplifiée).

Considérons un arbre soumis à une charge radiale F1 dans un palier lisse ; le contact est cylindrique (liaison pivot glissant). L'action du palier est F2. L'arbre subit également un couple moteur de moment M.

Au départ, il y a adhérence ; l'arbre « roule » dans le palier et « monte la côte ». Les forces F1 et F2 ne sont plus colinéaires mais sont sur deux axes parallèles, distants d'une distance d ; comme nous sommes à l'équilibre, on a

M = F1d = F2d.

Comme le profil est circulaire, la pente augmente. Pour une valeur donnée de M, l'angle vaut donc φ, l'angle limite d'adhérence ; l'arbre se met à glisser dans le palier, et donc à pivoter.

À ce point, l'action du palier est donc sur le cône d'adhérence. L'axe de ce cône est perpendiculaire à la surface en ce point, c'est donc un rayon, il passe par le centre de l'arbre. On voit que le cône s'appuie sur un cercle de rayon r valant :

r = d = R⋅sin φ.

Le couple résistant vaut donc

Mr = F1⋅R⋅sin φ

Si la valeur de l'adhérence est faible, on a alors[2],[3]

sin φ ≃ φ

et

φ ≃ tan φ = μ

(φ en radians), donc

Mr ≃ F1⋅R⋅μ ;
r ≃ R⋅μ.

Le tracé du petit cercle de rayon r permet une résolution graphique des problèmes.

Notes et références

  1. a et b {{harvsp|Fan|2011|p = 403
  2. Fan 2007, p. 84
  3. SG 2003, p. 104

Voir aussi

Bibliographie

Document utilisé pour la rédaction de l’article : document utilisé comme source pour la rédaction de cet article.