« Transition de phase d'un polymère » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
FDo64 (discuter | contributions)
m Maintenance modèle
 
(29 versions intermédiaires par 15 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
Les [[polymère]]s sont des matériaux utilisés dans des applications variées, déterminées par leur propriétés et leur mise en forme. Le comportement des polymères avec la température ou les sollicitations est ainsi déterminant. On observe différentes [[transition]]s dont l'étude est déterminante pour comprendre le comportement du matériau et choisir son domaine d'utilisation.
Une '''transition de phase d'un polymère''' est un changement de comportement observé dans certaines conditions, tels le passage de l'état [[Caoutchouc (matériau)|caoutchouteux]] à l'état [[visqueux]] à chaud et le passage à un état soit [[Matière amorphe|vitreux]], soit [[cristal]]lin à basse température. Les [[polymère]]s sont des matériaux utilisés dans des applications variées, déterminées par leurs [[Propriétés mécaniques d'un polymère|propriétés]] et leur [[Mise en forme des matériaux|mise en forme]], dont le comportement change avec la température ou les sollicitations. L'étude des [[Transition de phase|transitions]] est donc déterminante pour comprendre le comportement du matériau et choisir son domaine d'utilisation.


== Généralités ==
== Généralités ==
On peut classer les polymères en quatre catégories:
On peut classer les polymères en quatre catégories :
{| class="wikitable" border="1"
{| class="wikitable" border="1"
|-
|-
Ligne 8 : Ligne 8 :
! [[élastomère]]
! [[élastomère]]
! [[thermoplastique]] amorphe
! [[thermoplastique]] amorphe
! thermoplastique semi cristallin
! thermoplastique semi-[[cristal]]lin
! [[thermodurcissable]]
! [[thermodurcissable]]
|-
|-
| propriétés mécaniques<ref>Au-dessous de la [[température de transition vitreuse]] (Tg), tous les polymères sont des solides durs et cassants.</ref>
| propriétés mécaniques
| élastique
| élastique à T>Tg
| élastique à T>Tg
| peu déformable
| plastique à T>Tg
| légèrement déformable
| peu déformable
| rigide, peu déformable
|-
|-
| températures d'utilisation
| températures d'utilisation
| T>Tg
| T>Tg
Ligne 22 : Ligne 22 :
| T>Tg
| T>Tg
| T<Tg
| T<Tg
|-
|-
| structure des chaines
| structure des chaînes
| chaînes réticulées
| chaînes [[Réticulation|réticulées]]
| chaînes linéaires
| chaînes linéaires
| chaînes linéaires
| chaînes linéaires
| chaînes réticulées
| chaînes réticulées
|-
|-
| [[Point de ramollissement bille et anneau|ramollissement]]/[[Fusion (physique)|fusion]]
| fusion
| infusible
| infusible
| ramollissement
| liquéfaction seulement
| ramollissement puis fusion plus ou moins franche
| fusion
| infusible
| infusible
|-
|-
| [[diffractométrie de rayons X]]
| RX
| [[amorphe]]
| [[Matière amorphe|amorphe]]
| amorphe
| amorphe
| [[cristallin|semi-cristallin]]
| semi-cristallin
| amorphe
| amorphe
|}
|}


Ces types de polymères présentent des '''transitions différentes'''. On entend par transition un changement de comportement qui se traduit par des modifications structurales, et ce sous l'effet de la variation d'un paramètre extérieur. Dans notre cas, le paramètre peut être la température ou une sollicitation mécanique plus ou moins rapide.
Ces types de polymères présentent des '''transitions différentes'''. On entend par transition un changement de comportement qui se traduit par des modifications structurales, et ce sous l'effet de la variation d'un paramètre extérieur. Dans notre cas, le paramètre peut être la température ou une sollicitation mécanique plus ou moins rapide.
[[Image:Comportementsmécaniques.PNG|thumb|500px|center|alt=Comportement smécaniques|Différents comportements de polymères]]
[[Fichier:Comportementsmécaniques.PNG|thumb|500px|center|alt=Comportement smécaniques|Différents comportements mécaniques de polymères (courbe de traction)]]
Par comportement, on pense à: vitreux, plastique/caoutchouteux ou visqueux. Ces trois domaines sont séparés par deux transitions principales, respectivement la [[transition vitreuse]] et la [[fusion]] ou fluidification.
Par comportement, on pense à : vitreux, plastique/caoutchouteux ou visqueux. Ces trois domaines sont séparés par deux transitions principales, respectivement la [[transition vitreuse]] et la [[Fusion (physique)|fusion]] ou fluidification.


== Diagrammes d'état ==
== Diagrammes d'état ==
Comme on peut le voir, ces transitions ne sont pas observées dans tous les cas:
Comme on peut le voir, ces transitions ne sont pas observées dans tous les cas :
[[Image:Diagrammespolymères.PNG|thumb|440px|left|alt=Diagrammes polymères.PNG|Selon le type de polymère, les transitions ne sont pas les même]]
[[Fichier:Diagrammespolymères.PNG|thumb|440px|alt=Diagrammes polymères.PNG|Selon le type de polymère, les '''transitions''' ne sont pas les mêmes]]
*La '''transition vitreuse''' est tout le temps observée mais n'est pas très visible dans le cas de polymères très cristallins. Il s'agit d'une transition de phase du 2èm ordre, cela veut dire qu'elle ne s'accompagne pas d'un changement d'état: le matériau est solide (par opposition à liquide ou gazeux) et il le reste. Elle marque le passage de l'état vitreux (à basse température: cassant) à un état dit caoutchoutique et concerne la phase amorphe.
* La '''transition vitreuse''' est tout le temps observée mais n'est pas très visible dans le cas de polymères très cristallins. Elle est parfois décrite comme étant une transition de phase du {{2e|ordre}}<ref>[https://books.google.fr/books?id=xp5FipRRypwC&pg=PA26&dq=Glass+transition+order&hl=fr&sa=X&ei=S1AHT8fJLYXIhAedh4y8CQ&ved=0CHAQ6AEwCQ#v=onepage&q=Glass%20transition%20order&f=false ce qui est en fait inexact]</ref> : elle ne s'accompagne pas d'un changement d'état. Le matériau est solide (par opposition à liquide ou gazeux) et il le reste. Elle marque le passage de l'état vitreux (à basse température : cassant) à un état caoutchouteux, et concerne la phase amorphe.
*La '''fusion''' est elle une transition du 1er ordre: il y a effectivement le changement d'état du matériaux, qui passe de caoutchoutique à liquide (visqueux en pratique). Il n'y a fusion que pour les polymères semis cristallins (seule la partie cristalline est concernée).
* La '''fusion''' est elle une transition du {{1er}} ordre : il y a effectivement le changement d'état du matériau, qui passe de caoutchouteux à liquide (visqueux en pratique). Il n'y a fusion que pour les polymères semi-cristallins (seule la partie cristalline est concernée).
*la '''fluidification''' est une transition du second ordre qui se traduit par la fluidification de la partie amorphe des polymères à une dimension.<br />
* La '''fluidification''' est une transition du second ordre qui se traduit par la fluidification de la partie amorphe des polymères à une dimension.
En effet les thermodurcissables et les élastomères sont des réseaux 3D plus ou moins réticulés et qui ne se fluidifient pas. Dans tous les cas, si on chauffe trop on finit pas détruire le polymère.
En effet, les thermodurcissables et les élastomères sont des réseaux 3D plus ou moins réticulés et qui ne se fluidifient pas. Dans tous les cas, si l'on chauffe trop, on finit par détruire le polymère.
<br />






== Étude des transitions ==
== Étude des transitions ==
=== Méthodes thermiques ===
=== Méthodes thermiques ===
On a vu que des modifications de température permettaient d'observer les différentes transitions.
On a vu que des modifications de température permettaient d'observer les différentes transitions.
On peut facilement les visualiser en mesurant certaines grandeurs pour différentes température, typiquement le [[module d'Young]], le volume spécifique ou l'[[indice de réfraction]] par exemple.. Elles varient de manière brusque à Tg et Tf.
On peut facilement les visualiser en mesurant certaines grandeurs pour différentes température, typiquement le [[module de Young]], le volume spécifique ou l'[[indice de réfraction]] par exemple. Elles varient de manière brusque à Tg et Tf.

les méthodes d'analyse utilisées pour étudier les transitions d'un polymère donné sont la [[DSC]] ou l'[[AED]]:
Les méthodes d'analyse thermique utilisées pour étudier les transitions d'un polymère donné sont la [[Calorimétrie différentielle à balayage|DSC]] ou l'[[Analyse thermodifférentielle|ATD]].
[[Image:ThermogrammeAED.PNG|thumb|500px|center|alt=Thermogramme|AED d'un polymère cristallisable trempé, en montée puis en descente en température]]
[[Fichier:ThermogrammeAED.PNG|thumb|500px|center|alt=Thermogramme|DSC d'un polymère cristallisable trempé, en montée puis en descente en température]]
On obtient en pratique la variation de deltaCp ou de deltaT avec la température. La transition vitreuse donne un saut dans le "sens [[endothermique]]". La fusion (endothermique) est un pic observé dans les semi cristallins et dont l'aire permet de remonter au taux de cristallinité. Le pic est plus ou moins fin, en raison de la dispersité de tailles des chaînes. Selon l'histoire thermique du matériau, il y peut y avoir [[cristallisation]] lorsqu'on monte en température pour finir de cristalliser, mais aussi en descendant à une température inférieure à la température de fusion et que le matériau devient solide à nouveau. Un retard est courant à cause de la [[surfusion]].
On obtient en pratique la variation de deltaCp ou de deltaT avec la température. La transition vitreuse donne un saut dans le « sens [[endothermique]] ». La fusion (endothermique) est un pic observé dans les semi-cristallins et dont l'aire permet de remonter au [[taux de cristallinité]]. Le pic est plus ou moins fin, en raison de la dispersité de tailles des chaînes. Selon l'histoire thermique du matériau, il y peut y avoir [[cristallisation (chimie)|cristallisation]] lorsqu'on monte en température pour finir de cristalliser, mais aussi en descendant à une température inférieure à la température de fusion et que le matériau devient solide à nouveau. Un retard est courant à cause de la [[surfusion]].

La fluidification éventuelle pour les non cristallin à une dimension n'est pas observable.
La fluidification éventuelle pour les non cristallin à une dimension n'est pas observable.


=== Méthodes mécaniques ===
=== Méthodes mécaniques ===
Lorsqu'on applique une sollicitation ([[traction]] ou [[cisaillement]] par exemple), le matériau réagit différemment selon la vitesse à laquelle on l'applique. Ainsi un matériau cassera si on le cisaille à grande vitesse, aura un comportement caoutchouteux à vitesse plus faible et pourra même s'écouler si on attend un temps plutôt long.
Lorsqu'on applique une sollicitation ([[Essai de traction|traction]] ou [[Contrainte de cisaillement|cisaillement]] par exemple), le matériau réagit différemment selon la vitesse à laquelle elle est appliquée. Ainsi, un matériau cassera s'il est cisaillé à grande vitesse, aura un comportement caoutchouteux à vitesse plus faible et pourra même s'écouler sur une grande échelle de temps.

Concrètement on observe en [[DMA]] la variation d'un module en fonction d'une pulsation cyclique exercée, ou d'une température:
Concrètement, on observe en [[Viscoanalyseur|DM(T)A]] la variation d'un module en fonction d'une [[Vitesse angulaire|pulsation]] cyclique exercée, ou d'une température.
[[Image:Spectremécanique.PNG|thumb|500px|center|alt=Spectre mécanique|Variation des modules avec la température pour le même polymère que ci-dessus]]
[[Fichier:Spectremécanique.PNG|thumb|500px|center|alt=Spectre mécanique|Variation des modules de conservation et de perte en cisaillement d'un polymère cristallisable trempé avec la température]]
Cette méthode peut être plus précise que la précédente. Il arrive que la Tg soit difficile a identifier en DSC, alors qu'en général on parvient facilement à la déterminer ici, grâce au pic de tan(δ).
Si l'on observe les variations du module de conservation en cisaillement G' (ou du [[module de cisaillement]] G), on repère un plateau vitreux à faible température. Il n'y a pas de mouvements coopératifs des chaînes. Ce module est (relativement) constant car le solide a un comportement élastique en dessous de Tg, et élevé car le matériau est vitreux, rigide. En chauffant, on constate la chute du module élastique, le matériau devient caoutchouteux et moins élastique. Des mouvements coopératifs de [[reptation]] des chaînes ont lieu. G<nowiki>''</nowiki> est élevé à cause de [[dissipation]]s importantes. La cristallisation (Tc) donne un peu plus de cohésion au matériau et les modules augmentent avant de chuter après la température de fusion (Tf).

Cette méthode peut être plus précise que la précédente. Il arrive que la Tg soit difficile à identifier en DSC, alors qu'en général, on parvient facilement à la déterminer en DM(T)A, grâce au pic de tan δ (rapport des modules de perte et de conservation).


== Approche microscopique ==
== Approche microscopique ==
A l'état vitreux (en dessous de la Tg), il n'y a pas de mouvements des segments de chaîne, seulement des vibrations de liaisons et rotations de substituants. On a une compacité maximale et localement l'[[enthalpie]] domine (c'est à dire les interactions). Si on augmente la température (après la transition vitreuse), des mouvements de chaînes sans glissement ont lieu. Il subsiste des interactions (déformations sans glissement partiellement réversibles).
À l'état vitreux (en dessous de la Tg), il n'y a pas de mouvements des segments de chaîne, seulement des vibrations de liaisons et rotations de substituants. On a une compacité maximale et localement l'[[enthalpie]] domine (c'est-à-dire les interactions). Si l'on augmente la température (après la [[transition vitreuse]]), des mouvements de chaînes sans glissement ont lieu. Il subsiste des interactions (déformations sans glissement partiellement réversibles).
Pour définir la température de transition vitreuse, on peut utiliser la théorie du [[volume libre]]. Elle dit que cette température est celle pour laquelle on a un volume libre constant lorsqu'on refroidit. Il existe aussi la théorie cinétique qui prend en compte la vitesse de refroidissement/chauffage, et la théorie thermodynamique, qui prédit T=Tg lorsque l'[[entropie]] tend vers 0.
Pour définir la [[température de transition vitreuse]], on peut utiliser la théorie du [[volume libre]]. Elle dit que cette température est celle pour laquelle on a un volume libre constant lorsqu'on refroidit. Il existe aussi la théorie cinétique qui prend en compte la vitesse de refroidissement/chauffage, et la théorie thermodynamique, qui prédit T=Tg lorsque l'[[Entropie (thermodynamique)|entropie]] tend vers 0.


Au dessus de la fusion ou fluidification (quand elle a lieu), on assiste à des écoulements de chaîne entières. Les interactions fortes à courte distance ont disparu et il y a écoulement.
Au-dessus de la fusion ou fluidification (quand elle a lieu), on assiste à des écoulements de chaînes entières. Les interactions fortes à courte distance ont disparu et il y a écoulement.
Si on continue d'apporter de l'énergie, on finit par rompre des segments et le polymère se décompose.
Si l'on continue d'apporter de l'énergie, on finit par rompre des segments et le polymère se décompose.


== Lien entre structure, transitions et propriétés ==
== Lien entre structure, transitions et propriétés ==
Si on peut faire varier la valeur de transition vitreuse ou de fusion, on peut faire varier le domaine d'utilisation, domaine de température ou sollicitation où le matériau a la propriété désirée. Une Tg (température de transition vitreuse) élevée permet d'avoir une bonne tenue mécanique, chimique et thermique.
Si l'on peut faire varier la valeur de transition vitreuse ou de fusion, on peut faire varier le domaine d'utilisation, domaine de température ou sollicitation où le matériau a la propriété désirée. Une Tg (température de transition vitreuse) élevée permet d'avoir une bonne tenue mécanique, chimique et thermique. C'est souvent la première propriété mesurée lorsqu'on synthétise un nouveau polymère<ref>{{pdf}} {{en}} [http://web.missouri.edu/~kattik/katti/Thermal%20Behavior%20of%20Polymers.pdf ''Thermal Behavior of Polymers'']</ref>.

=== paramètres influençant la valeur de température de transition vitreuse (Tg) ===
=== Paramètres influençant la valeur de température de transition vitreuse (Tg) ===
* masse molaire
* [[Masse molaire]]
La Tg varie en <math> T_g = T_{g\infty} - \frac{K}{M_n} </math> mais uniquement dans le cas d'un [[oligomère]]. Elle augmente avec la masse molaire ce qui peut se comprendre si on prend en compte le fait que cela s'accompagne d'une diminution de la concentration de bouts de chaînes. Ceux-ci participent grandement au volume libre qui diminue et la structure devient plus compacte. Il est faut apporter plus d'énergie pour permettre la transition qui a lieu à plus haute température : Tg augmente. Dans le régime polymère, elle atteint une valeur maximale indépendante de Mn: <math> T_{g\infty} </math>.
La Tg varie selon<ref>{{en}} James E. Mark, ''Physical properties of polymers handbook'', {{ISBN|0-387-31235-8|978-0-387-31235-4}}</ref> :
*rigidité de la chaîne principale
: <math> T_g = T_{g\infty} - \frac{K}{M_n} </math>,
mais uniquement dans le cas d'un [[oligomère]]. Elle augmente avec la masse molaire, car la concentration de bouts de chaînes diminue. Ceux-ci participent grandement au volume libre qui diminue et la structure devient plus compacte. Il faut apporter plus d'énergie pour permettre la transition qui a lieu à plus haute température : Tg augmente. Dans le régime polymère, elle atteint une valeur maximale indépendante de Mn : <math> T_{g\infty} </math>.
* Rigidité de la chaîne principale
Elle entraîne une augmentation de la Tg.
Elle entraîne une augmentation de la Tg.
*interactions inter et intra moléculaires
* Interactions inter et intramoléculaires
Elles donnent une structure plus cohésive et avec une Tg qui augmente. Elle peut atteindre 300 à 400 degrés pour les ionomères, qui possèdent des liaisons ioniques très fortes interchaînes.
Elles donnent une structure plus cohésive, et la Tg augmente. Elle peut atteindre 300 à {{tmp|400|°C}} pour les [[ionomère]]s, qui possèdent des liaisons ioniques interchaînes très fortes.
*facteurs géométriques
* Facteurs géométriques
Par exemple, la valeur de Tg est ~ {{tmp|-110|°C}} pour le [[polyéthylène]], contre ~ {{tmp|100|°C}} pour le [[polystyrène]]. L'[[encombrement stérique]] important du groupe [[phényle]] a pour conséquence une rotation relativement difficile des chaînes de PS.
Une grande symétrie abaisse la Tg des polymères. Elle est par exemple de -110°C pour le PE, contre -20°C pour le PP<ref name="a">http://www.atomer.fr/1/1a-Tg-temperature-transition-vitreuse.html</ref>.
*taille des substituants
* Taille des substituants
Lorsqu'ils sont volumineux, l'espace entre les chaînes augmente, le volume libre aussi et la Tg diminue. Ainsi elle est de -20 °C pour le [[polypropylène]], contre -40 °C pour le [[polypentène]]<ref name="a"/>.
Lorsqu'ils sont volumineux, l'espace entre les chaînes augmente, le volume libre aussi et la Tg diminue. Ainsi, Tg ~ {{tmp|-20|°C}} pour le [[polypropylène]], contre ~ {{tmp|-40|°C}} pour le [[polypentène]].
*ramifications et réticulations
* Ramifications et réticulations
On doit prendre en compte l'évolution du nombre de bouts de chaînes qui abaissent la Tg et la présence de points de ramifications (cohésion) qui l'augmente. Pour la ramification le 1<sup>er</sup> effet l'emporte mais pour la réticulation c'est le 2<sup>e</sup> effet qui est prédominant. On peut ainsi vulcaniser un élastomère (le réticuler) pour augmenter sa Tg.
On doit prendre en compte l'évolution du nombre de bouts de chaînes qui abaissent la Tg, et la présence de [[Chaîne latérale|points de ramifications]] (cohésion) qui l'augmente. Pour la ramification, le {{1er|effet}} l'emporte, mais pour la [[réticulation]], c'est le {{2e|effet}} qui est prédominant. On peut ainsi [[vulcanisation|vulcaniser]] un [[élastomère]] (le réticuler) pour augmenter sa Tg.
* Cristallinité
*cristallinité
En utilisant une méthode de synthèse adéquate on peut obtenir parfois un certain taux de cristallisation, ce qui renforce la cohésion du matériaux et donc augmente sa Tg.
En utilisant une méthode de synthèse adéquate, on peut obtenir parfois un certain [[taux de cristallinité]], ce qui renforce la cohésion du matériau et donc augmente sa Tg.
* [[Copolymère|Copolymérisation]]
*copolymérisation
Selon la miscibilité on peut avoir de 1 à 3 Tg différentes: celles correspondant aux homopolymères et celle de la phase miscible.
Selon la [[miscibilité]], on peut avoir de 1 à 3 Tg différentes : celles correspondant aux [[homopolymère]]s et celle de la phase miscible.
* Plastification
*plastification
C'est un moyen d'abaisser la Tg: on insère des petites molécules mobiles
L'ajout de [[Plastifiant pour matière plastique|plastifiants]] est un moyen d'abaisser la Tg : les petites molécules mobiles s'insèrent entre les chaînes moléculaires et diminuent les interactions.


=== paramètres jouant sur la température de fusion (Tf) ===
=== Paramètres jouant sur la température de fusion (Tf) ===
*épaisseur des lamelles cristallines: Tf augmente avec leur épaisseur
* épaisseur des lamelles cristallines : Tf augmente avec leur épaisseur ;
*présence d'impuretés
* présence d'impuretés ;
*présence de plastifiants
* présence de [[Plastifiant pour matière plastique|plastifiants]].
=== effet de la cristallisation ===
La cristallisation a lieue pour une température variable en fonction de la surfusion en lien avec la germination. L'histoire thermique du matériau est importante.


=== Effet de la cristallisation ===
== Liens externes ==
La cristallisation a lieu pour une température variable en fonction de la surfusion en lien avec la germination. L'histoire thermique du matériau est importante.
{en} [http://academic.sun.ac.za/UNESCO/PolymerED2001/Contributions/LecUNESCO/Hess.pdf transitions dans les polymères]<br />
{en} [http://materiaux.ecam.fr/savoirplus/dsc/dscla.html DSC et analyse de courbes]


== Notes et références ==
== Notes et références ==
{{Références}}
<references />
Physical properties of polymers handbook Par James E. Mark {{ISBN|0-387-31235-8|978-0-387-31235-4}}


== Articles connexes ==
== Articles connexes ==
* [[Polymère]]
[[Polymères]]<br />
* [[Transition de phase]]
[[Température de transition vitreuse]]<br />
* [[Température de transition vitreuse]]
[[Transition]]<br />
* [[Température de fusion d'un polymère]]
* [[Taux de cristallinité]]

== Liens externes ==
* {{pdf}} {{en}} [http://academic.sun.ac.za/UNESCO/PolymerED2001/Contributions/LecUNESCO/Hess.pdf Transitions dans les polymères]
* [http://materiaux.ecam.fr/savoirplus/dsc/dscla.html DSC et analyse de courbes]


{{Palette|Matériaux polymères}}
{{Portail|Chimie|Physique}}
{{Portail|Chimie|Physique}}


[[Catégorie:Polymère|*]]
[[Catégorie:Polymère]]

Dernière version du 24 décembre 2018 à 00:23

Une transition de phase d'un polymère est un changement de comportement observé dans certaines conditions, tels le passage de l'état caoutchouteux à l'état visqueux à chaud et le passage à un état soit vitreux, soit cristallin à basse température. Les polymères sont des matériaux utilisés dans des applications variées, déterminées par leurs propriétés et leur mise en forme, dont le comportement change avec la température ou les sollicitations. L'étude des transitions est donc déterminante pour comprendre le comportement du matériau et choisir son domaine d'utilisation.

Généralités[modifier | modifier le code]

On peut classer les polymères en quatre catégories :

caractéristiques élastomère thermoplastique amorphe thermoplastique semi-cristallin thermodurcissable
propriétés mécaniques[1] élastique à T>Tg élastique à T>Tg plastique à T>Tg rigide, peu déformable
températures d'utilisation T>Tg T<Tg T>Tg T<Tg
structure des chaînes chaînes réticulées chaînes linéaires chaînes linéaires chaînes réticulées
ramollissement/fusion infusible ramollissement ramollissement puis fusion plus ou moins franche infusible
diffractométrie de rayons X amorphe amorphe semi-cristallin amorphe

Ces types de polymères présentent des transitions différentes. On entend par transition un changement de comportement qui se traduit par des modifications structurales, et ce sous l'effet de la variation d'un paramètre extérieur. Dans notre cas, le paramètre peut être la température ou une sollicitation mécanique plus ou moins rapide.

Comportement smécaniques
Différents comportements mécaniques de polymères (courbe de traction)

Par comportement, on pense à : vitreux, plastique/caoutchouteux ou visqueux. Ces trois domaines sont séparés par deux transitions principales, respectivement la transition vitreuse et la fusion ou fluidification.

Diagrammes d'état[modifier | modifier le code]

Comme on peut le voir, ces transitions ne sont pas observées dans tous les cas :

Diagrammes polymères.PNG
Selon le type de polymère, les transitions ne sont pas les mêmes
  • La transition vitreuse est tout le temps observée mais n'est pas très visible dans le cas de polymères très cristallins. Elle est parfois décrite comme étant une transition de phase du 2e ordre[2] : elle ne s'accompagne pas d'un changement d'état. Le matériau est solide (par opposition à liquide ou gazeux) et il le reste. Elle marque le passage de l'état vitreux (à basse température : cassant) à un état caoutchouteux, et concerne la phase amorphe.
  • La fusion est elle une transition du 1er ordre : il y a effectivement le changement d'état du matériau, qui passe de caoutchouteux à liquide (visqueux en pratique). Il n'y a fusion que pour les polymères semi-cristallins (seule la partie cristalline est concernée).
  • La fluidification est une transition du second ordre qui se traduit par la fluidification de la partie amorphe des polymères à une dimension.

En effet, les thermodurcissables et les élastomères sont des réseaux 3D plus ou moins réticulés et qui ne se fluidifient pas. Dans tous les cas, si l'on chauffe trop, on finit par détruire le polymère.

Étude des transitions[modifier | modifier le code]

Méthodes thermiques[modifier | modifier le code]

On a vu que des modifications de température permettaient d'observer les différentes transitions. On peut facilement les visualiser en mesurant certaines grandeurs pour différentes température, typiquement le module de Young, le volume spécifique ou l'indice de réfraction par exemple. Elles varient de manière brusque à Tg et Tf.

Les méthodes d'analyse thermique utilisées pour étudier les transitions d'un polymère donné sont la DSC ou l'ATD.

Thermogramme
DSC d'un polymère cristallisable trempé, en montée puis en descente en température

On obtient en pratique la variation de deltaCp ou de deltaT avec la température. La transition vitreuse donne un saut dans le « sens endothermique ». La fusion (endothermique) est un pic observé dans les semi-cristallins et dont l'aire permet de remonter au taux de cristallinité. Le pic est plus ou moins fin, en raison de la dispersité de tailles des chaînes. Selon l'histoire thermique du matériau, il y peut y avoir cristallisation lorsqu'on monte en température pour finir de cristalliser, mais aussi en descendant à une température inférieure à la température de fusion et que le matériau devient solide à nouveau. Un retard est courant à cause de la surfusion.

La fluidification éventuelle pour les non cristallin à une dimension n'est pas observable.

Méthodes mécaniques[modifier | modifier le code]

Lorsqu'on applique une sollicitation (traction ou cisaillement par exemple), le matériau réagit différemment selon la vitesse à laquelle elle est appliquée. Ainsi, un matériau cassera s'il est cisaillé à grande vitesse, aura un comportement caoutchouteux à vitesse plus faible et pourra même s'écouler sur une grande échelle de temps.

Concrètement, on observe en DM(T)A la variation d'un module en fonction d'une pulsation cyclique exercée, ou d'une température.

Spectre mécanique
Variation des modules de conservation et de perte en cisaillement d'un polymère cristallisable trempé avec la température

Si l'on observe les variations du module de conservation en cisaillement G' (ou du module de cisaillement G), on repère un plateau vitreux à faible température. Il n'y a pas de mouvements coopératifs des chaînes. Ce module est (relativement) constant car le solide a un comportement élastique en dessous de Tg, et élevé car le matériau est vitreux, rigide. En chauffant, on constate la chute du module élastique, le matériau devient caoutchouteux et moins élastique. Des mouvements coopératifs de reptation des chaînes ont lieu. G'' est élevé à cause de dissipations importantes. La cristallisation (Tc) donne un peu plus de cohésion au matériau et les modules augmentent avant de chuter après la température de fusion (Tf).

Cette méthode peut être plus précise que la précédente. Il arrive que la Tg soit difficile à identifier en DSC, alors qu'en général, on parvient facilement à la déterminer en DM(T)A, grâce au pic de tan δ (rapport des modules de perte et de conservation).

Approche microscopique[modifier | modifier le code]

À l'état vitreux (en dessous de la Tg), il n'y a pas de mouvements des segments de chaîne, seulement des vibrations de liaisons et rotations de substituants. On a une compacité maximale et localement l'enthalpie domine (c'est-à-dire les interactions). Si l'on augmente la température (après la transition vitreuse), des mouvements de chaînes sans glissement ont lieu. Il subsiste des interactions (déformations sans glissement partiellement réversibles). Pour définir la température de transition vitreuse, on peut utiliser la théorie du volume libre. Elle dit que cette température est celle pour laquelle on a un volume libre constant lorsqu'on refroidit. Il existe aussi la théorie cinétique qui prend en compte la vitesse de refroidissement/chauffage, et la théorie thermodynamique, qui prédit T=Tg lorsque l'entropie tend vers 0.

Au-dessus de la fusion ou fluidification (quand elle a lieu), on assiste à des écoulements de chaînes entières. Les interactions fortes à courte distance ont disparu et il y a écoulement. Si l'on continue d'apporter de l'énergie, on finit par rompre des segments et le polymère se décompose.

Lien entre structure, transitions et propriétés[modifier | modifier le code]

Si l'on peut faire varier la valeur de transition vitreuse ou de fusion, on peut faire varier le domaine d'utilisation, domaine de température ou sollicitation où le matériau a la propriété désirée. Une Tg (température de transition vitreuse) élevée permet d'avoir une bonne tenue mécanique, chimique et thermique. C'est souvent la première propriété mesurée lorsqu'on synthétise un nouveau polymère[3].

Paramètres influençant la valeur de température de transition vitreuse (Tg)[modifier | modifier le code]

La Tg varie selon[4] :

,

mais uniquement dans le cas d'un oligomère. Elle augmente avec la masse molaire, car la concentration de bouts de chaînes diminue. Ceux-ci participent grandement au volume libre qui diminue et la structure devient plus compacte. Il faut apporter plus d'énergie pour permettre la transition qui a lieu à plus haute température : Tg augmente. Dans le régime polymère, elle atteint une valeur maximale indépendante de Mn : .

  • Rigidité de la chaîne principale

Elle entraîne une augmentation de la Tg.

  • Interactions inter et intramoléculaires

Elles donnent une structure plus cohésive, et la Tg augmente. Elle peut atteindre 300 à 400 °C pour les ionomères, qui possèdent des liaisons ioniques interchaînes très fortes.

  • Facteurs géométriques

Par exemple, la valeur de Tg est ~ −110 °C pour le polyéthylène, contre ~ 100 °C pour le polystyrène. L'encombrement stérique important du groupe phényle a pour conséquence une rotation relativement difficile des chaînes de PS.

  • Taille des substituants

Lorsqu'ils sont volumineux, l'espace entre les chaînes augmente, le volume libre aussi et la Tg diminue. Ainsi, Tg ~ −20 °C pour le polypropylène, contre ~ −40 °C pour le polypentène.

  • Ramifications et réticulations

On doit prendre en compte l'évolution du nombre de bouts de chaînes qui abaissent la Tg, et la présence de points de ramifications (cohésion) qui l'augmente. Pour la ramification, le 1er effet l'emporte, mais pour la réticulation, c'est le 2e effet qui est prédominant. On peut ainsi vulcaniser un élastomère (le réticuler) pour augmenter sa Tg.

  • Cristallinité

En utilisant une méthode de synthèse adéquate, on peut obtenir parfois un certain taux de cristallinité, ce qui renforce la cohésion du matériau et donc augmente sa Tg.

Selon la miscibilité, on peut avoir de 1 à 3 Tg différentes : celles correspondant aux homopolymères et celle de la phase miscible.

  • Plastification

L'ajout de plastifiants est un moyen d'abaisser la Tg : les petites molécules mobiles s'insèrent entre les chaînes moléculaires et diminuent les interactions.

Paramètres jouant sur la température de fusion (Tf)[modifier | modifier le code]

  • épaisseur des lamelles cristallines : Tf augmente avec leur épaisseur ;
  • présence d'impuretés ;
  • présence de plastifiants.

Effet de la cristallisation[modifier | modifier le code]

La cristallisation a lieu pour une température variable en fonction de la surfusion en lien avec la germination. L'histoire thermique du matériau est importante.

Notes et références[modifier | modifier le code]

  1. Au-dessous de la température de transition vitreuse (Tg), tous les polymères sont des solides durs et cassants.
  2. ce qui est en fait inexact
  3. [PDF] (en) Thermal Behavior of Polymers
  4. (en) James E. Mark, Physical properties of polymers handbook, (ISBN 0-387-31235-8 et 978-0-387-31235-4)

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]